Данная статья предназначена для тех, кто не хочет «заморачиваться» с МК.

Каждый радиолюбитель в процессе своей творческой деятельности сталкивается с необходимостью оборудования своей «лаборатории» необходимыми измерительными приборами.
Одним из приборов - это частотомер. У кого есть возможность, тот покупает готовый, а кто-то и собирает свою конструкцию, по своим возможностям.
Сейчас много различных конструкций, выполненных на МК, но встречаются и на цифровых микросхемах (как говорится «гугл в помощь!»).
После «ревизии» в своих закромах обнаружилось, что имеются в наличии цифровые микросхемы серий 155, 555, 1533, 176, 561, 514ИД1(2) (простая логика - ЛА, ЛЕ, ЛН, ТМ, средней сложности - ИЕ, ИР, ИД, еще 80-90 г.г. выпуска, выбрасывать их - «жаба» задавила!) на которых можно собрать не сложный приборчик, из тех компонентов, которые были под рукой в данный момент.
Захотелось просто творчества, поэтому приступил к разработке частотомера.

Рисунок 1.
Внешний вид частотомера.

Блок-схема частотомера:

Рисунок 2.
Блок-схема частотомера.

Входное устройство-формирователь.

Схему взял из журнала «Радио» 80-х годов (точно не помню, но вроде как частотомер Бирюкова). Ранее повторял её, работой был доволен. В формирователе использована К155ЛА8 (уверенно работает на частотах до 15-20 мГц). При использовании в частотомере микросхем 1533 серии (счётчики, входной формирователь) рабочая частота частотомера составляет 30-40 мГц.


Рисунок 3.
Входной формирователь и ЗГ измерительных интервалов.

Задающий генератор, формирователь измерительных интервалов.

Задающий генератор собран на часовой МС серии К176, изображён на рисунке №3 вместе с входным формирователем.
Включение МС К176ИЕ12 типовое, каких-либо отличий нет. Формируются частоты 32,768 кГц, 128 Гц, 1,024 кГц, 1 Гц. Используется в ЧС только 1 Гц. Для формирования управляющего сигнала для ВУ эта частота делится на 2 (0,5 Гц) МС К561ТМ2 (CD4013A) (используется один D-триггер).


Рисунок 4.
Сигналы интервалов.

Формирователь сигналов сброса счетчиков КР1533ИЕ2 и записи в регистры хранения К555ИР16

Собран на МС К555(155)АГ3 (два ждущих мультивибратора в одном корпусе), можно использовать и две МС К155АГ1 (смотри рис.№3).
По спаду управляющего сигнала МС АГ3 первый ж/м формирует импульс Rom - записи в регистры хранения. По спаду импульса Rom формируется вторым ж/м импульс сброса триггеров счетчиков КР1533ИЕ2 Reset.


Рисунок 5.
Сигнал сброса.

Для при измерении частоты собран блок на 2-х К555ИР16 и 4-х К555(155)ЛЕ1 (схемку нашел на просторах интернета, только немного подкорректировал под себя и имеющуюся элементарную базу).
Можно упростить частотомер и не собирать схему гашения незначащих нулей (на рисунке №9 изображена схема частотомера без схемы гашения незначащих нулей), в этом случае просто будут светиться все индикаторы, смотрите сами, как Вам лучше.
Я её собрал потому, что мне просто так приятнее смотреть на табло частотомера.


Рисунок 6. Схема гашения незначащих нулей.

Включение счетчиков КР1533ИЕ2, регистров К555ИР16, дешифраторов КР514ИД2 типовое, согласно документации.


Рисунок 7.
Схема включения счётчиков и дешифраторов.

Весь ЧС собран на 5-х платах:
1, 2 - счетчики, регистры и дешифраторы (на каждой плате по 4-е декады);
3 - блок гашения незначащих нулей;
4 - задающий генератор, формирователь измерительных интервалов, формирователь сигналов Rom и Reset;
5 - блок питания.

Размеры плат: 1 и 2 - 70х105, 3 и 4 - 43х100; 5 - 50х110.


Рисунок 8.
Подключение схемы гашения незначащих нулей в частотомере.

Блок питания. Собран на двух МС 7805. Включения типовое, как рекомендует завод-изготовитель. Для принятия решения по блоку питания были проведены замеры тока потребления ЧС, так же проверялось возможность применения ИБП и БП с ШИМ стабилизацией. Проверялись: ИБП собранный на TNY266PN (5В, 2А), БП с ШИМ на основе LM2576T-ADJ (5В, 1,5А). Общее замечания - ЧС работает не корректно, т.к. по цепи питания проходят импульсы с частотой работы драйверов (для TNY266PN около 130 кГц, для LM2576T-ADJ - 50 кГц). Применение фильтров большого изменения не выявили. Так, что остановился на обыкновенном БП - транс, диодный мост, электролиты и две МС 7805. Ток потребления всего ЧС (на индикаторах все «8») около 0,8А, когда индикаторы погашены - 0,4А.


Рисунок 9.
Схема частотомера без схемы гашения незначащих нулей.

В блоке питания использовал две МС 7805 для питания ЧС. Одна МС стабилизатора питает плату входного формирователя, блока управления дешифраторами (гашение незначащих нулей) и одной платы счетчиков-дешифраторов. Вторая МС 7805 - питает другую плату счетчиков-дешифраторов и индикаторы. Можно бп собрать и на одной 7805, но греться будет прилично, встанет проблема с отведением тепла. В ЧС можно применять МС серий 155, 555, 1533. Все зависит от возможностей….




Рисунок 10, 11, 12, 13.
Конструкция частотомера.

Возможная замена: К176ИЕ12 (MM5368) на К176ИЕ18, К176ИЕ5 (CD4033E); КР1533ИЕ2 на К155ИЕ2 (SN7490AN, SN7490AJ), К555ИЕ2 (SN74LS90); К555ИР16 (74LS295N) можно заменить на К155ИР1 (SN7495N, SN7495J) (отличаются одним выводом), или применить для хранения информации К555(155)ТМ5(7) (SN74LS77, SN74LS75); КР514ИД2 (MSD101) дешифратор для индикаторов с ОА, можно применить и КР514ИД1 (MSD047) дешифратор для индикаторов с ОК; К155ЛА8 (SN7403PC) 4 элемента 2И-НЕ с открытым коллектором - на К555ЛА8; К555АГ3 (SN74LS123) на К155АГ3 (SN74123N, SN74123J), или две К155АГ1 (SN74121); К561ТМ2 (CD4013A) на К176ТМ2 (CD4013E). К555ЛЕ1 (SN74LS02).

P.S. Можно использовать различные индикаторы с ОА, только ток потребления на один сегмент не должен превышать нагрузочной способности дешифратора по выходу.. Ограничительные резисторы зависят от типа применяемого индикатора (в моем случае 270 ом).

Ниже в архиве есть все необходимые файлы и материалы для сборки частотомера.

Удачи всем и всего наилучшего!

Построенный . Он позволяет измерять частоты до 10 МГц в четырех автоматически переключаемых диапазонах. Наименьший диапазон имеет разрешение 1 Гц.

Технические характеристики частотомера

  • Диапазон 1: 9,999 кГц, разрешение 1 Гц.
  • Диапазон 2: 99,99 кГц, разрешение до 10 Гц.
  • Диапазон 3: 999.9 кГц, разрешение до 100 Гц.
  • Диапазон 4: 9999 кГц, разрешение до 1 кГц.

Описание частотомера на микроконтроллере

Микроконтроллер Attiny2313 работает от внешнего кварцевого генератора с тактовой частотой 20 МГц (это максимально допустимая частота). Точность измерения частотомера определяется точностью данного кварца. Минимальная длина полупериода измеряемого сигнала должна быть больше, чем период кварцевого генератора (это связано с ограничениями архитектуры микроконтроллера ATtiny2313). Следовательно, 50 процентов от тактовой частоты генератора составляет 10 МГц (это максимальное значение измеряемой частоты).

Установка фьюзов (в PonyProg):

На базе только одной микросхемы К155ЛАЗ, используя все ее логические элементы 2И-НЕ, можно построить сравнительно простой прибор, способный измерять частоту переменного напряжения примерно от 20 Гц до 20 кГц. Входным элементом такого измерительного прибора колебаний звуковой частоты служит триггер Шмитта - устройство, преобразующее подаваемое на его вход переменное напряжение синусоидальной формы в электрические импульсы такой же частоты. Без такого преобразования аналогового сигнала логические элементы работать не будут, причем триггер Шмитта "срабатывает" при определенной амплитуде входного сигнала. Если она меньше порогового значения, импульсного сигнала на выходе триггера не будет.

Начнем с опыта.

Триггер Шмитта. Пользуясь схемой, показанной на рис. 23, а, смонтируйте на макетной панели микросхему К155ЛАЗ, включив в работу только два ее логических элемента. Здесь же, на панели, разместите батареи GB1 и GB2, составленные из четырех гальванических элементов 332 или 316, и переменный резистор R1 сопротивлением 1,5 или 2,2 кОм (желательно с функциональной характеристикой А - линейной). Выводы батарей подключайте к резистору только на время опытов.

Включите питание микросхемы и по вольтметру постоянного тока установите движок переменного резистора в такое положение, при котором на левом, по схеме, выводе резистора R2, являющемся входом триггера Шмитта, будет нулевое напряжение. При этом элемент DD1.1 окажется в единичном состоянии - на его выходном выводе 3 будет напряжение высокого уровня, а элемент DD1.2 - в нулевом. Таково исходное состояние элементов этого триггера.

Рис. 23. Опытный триггер Шмитта и графики, иллюстрирующие его работу

Теперь вольтметр постоянного тока подключите к выходу элемента DD1.2 и, внимательно наблюдая за его стрелкой, начинайте плавно перемещать движок переменного резистора в сторону верхнего, по схеме, вывода, а затем, не останавливаясь, в обратную сторону - до нижнего вывода, далее - до верхнего и т. д. Что при этом фиксирует вольтметр? Периодическое переключение элемента DD1.2 из нулевого состояния в единичное, т. е., иначе говоря, появление на выходе триггера импульсов положительной полярности.

Взгляните на графики б и в на том же рис. 23, которые иллюстрируют работу триггера. Перемещением движка переменного резистора из одного крайнего положения в другое вы имитировали подачу на вход опытного устройства переменного напряжения синусоидальной формы (рис. 23.б) амплитудой до 3 В. Пока напряжение положительной полуволны этого сигнала было меньше порогового (U пор.1), устройство сохраняло исходное состояние. При достижении же порогового напряжения, равного примерно 1,7 В (в момент t 1), оба элемента переключились в противоположные состояния и на выходе триггера (вывод 6 элемента DD1.2) появилось напряжение высокого уровня. Дальнейшее повышение положительного напряжения на входе не изменило этого состояния элементов триггера. А вот при перемещении движка в обратную сторону, когда напряжение на входе триггера снизилось примерно до 0,5 В (момент t 2), оба элемента переключились в первоначальное состояние. На выходе триггера вновь появился высокий уровень напряжения.

Отрицательная полуволна не изменила этого состояния элементов, образующих триггер Шмитта, поскольку оказалась замкнутой на общий проводник источника питания через внутренние диоды входной цепи элемента DD1.1.

При следующей положительной полуволне входного переменного напряжения на выходе триггера сформируется второй импульс положительной полярности (моменты t 3 и t 4). Повторите этот опыт несколько раз и по показаниям вольтметров, подключенных ко входу и выходу триггера, постройте графики, характеризующие его работу. Они должны получиться такими же, как и те, что на графиках рис. 23. Два разных по уровню порога срабатывания элементов - наиболее характерная особенность триггера Шмитта.

Принципиальная схема предлагаемого для повторения частотомера приведена на рис. 24. Логические, элементы DD1.1, DD1.2 и резисторы R1-R3 образуют триггер Шмитта, а два других элемента той же микросхемы - формирователь его выходных импульсов, от частоты следования которых зависят показания микроамперметра РА1. Без формирователя прибор не даст достоверных результатов измерения, потому что длительность импульсов на выходе триггера зависит от частоты входного измеряемого переменного напряжения.

Конденсатор С1 - разделительный. Пропуская широкую полосу колебаний звуковой частоты, он преграждает путь постоянной составляющей источника сигнала. Диод VD2 замыкает на общий провод цепи питания отрицательные полуволны напряжения (в принципе этого диода может и не быть, поскольку его функцию способны выполнять внутренние диоды на входе элемента DD1.1), диод VD1 ограничивает амплитуду положительных полуволн, поступивших на входы первого элемента, на уровне напряжения источника питания.

Рис. 24. Принципиальная схема простейшего частотомера

С выхода триггера (вывод 6 элемента DD1.2) импульсы положительной полярности поступают на вход формирователя. Работает формирователь так. Элемент DD1.3 включен инвертором, а DD1.4 используется по своему прямому назначению-как логический элемент 2И-НЕ. Как только на входе формирователя (выводы 9, 10 элемента DD1.3) появляется напряжение низкого уровня, элемент DD1.3 переключается в единичное состояние и через него и резистор R4 заряжается один из конденсаторов С2-С4. По мере зарядки конденсатора положительное напряжение на выводе 13 элемента DD1.4 повышается до высокого уровня. Но этот элемент остается в единичном состоянии, так как на втором его входном выводе 12, как и на выходе триггера Шмитта, низкий уровень напряжения. В таком режиме через микроамперметр протекает незначительный ток. Как только на выходе триггера Шмитта появляется напряжение высокого уровня, элемент DD1.4 переключается в нулевое состояние и через микроампер-метр начинает протекать значительный ток. Одновременно элемент DD1.3 переключается в нулевое состояние, и конденсатор формирователя начинает разряжаться. Когда напряжение на нем снизится до порогового, элемент DD1.4 вновь переключится в единичное состояние. Таким образом, на выходе формирователя появляется импульс отрицательной полярности (см. рис. 23,г), в течение которого через микроамперметр протекает ток, значительно больший, чем начальный. Угол отклонения стрелки, микроамперметра пропорционален частоте следования импульсов: чем она больше, тем на больший угол отклоняется стрелка.

Длительность импульсов на выходе формирователя определяется продолжительностью разрядки включенного времязадающего конденсатора (С2, СЗ или С4) до напряжения срабатывания элемента DD1.4. Чем меньше его емкость, тем короче импульс, тем большую частоту входного сигнала можно измерить. Так, с времязадающнм конденсатором С2 емкостью 0,2 мкФ прибор способен измерять частоту колебаний ориентировочно от 20 до 200 Гц, с конденсатором СЗ емкостью 0,02 мкФ - от 200 до 2000 Гц, с конденсатором С4 емкостью 2000 пФ - от 2 до 20 кГц. Подстроечными резисторами R5 - R7 стрелку микроамперметра устанавливают на конечную отметку шкалы, соответствующую наибольшей измеряемой частоте соответствующего поддиапазона. Минимальный уровень переменного напряжения, частоту которого можно измерить, около 1,5В.

Еще раз проанализируйте графики на рис. 23, чтобы закрепить в памяти принцип работы частотомера, а затем дополните опытный триггер Шмитта деталями входной цепи и формирователя и испытайте устройство в действии на макетной панели. На это время переключатель поддиапазонов не нужен, времязадающий конденсатор, например С2, можно подключить непосредственно к выводу 13 элемента DD1.4, а в цепь микроамперметра включить один из подстроечных резисторов или постоянный резистор сопротивлением 2,2...3,3 кОм. Микроамперметр РА1 на ток полного отклонения стрелки 100 мкА такой же, как в сетевом блоке питания.

Налаживание. Закончив монтаж, включите источник питания и подайте на входные выводы 1, 2 первого элемента триггера Шмитта импульсы положительной полярности. Их источником может быть описанный выше генератор испытательных импульсов или другой аналогичный генератор. Частоту следования импульсов установите минимальную. При этом стрелка микроамперметра должна резко отклоняться на некоторый угол и возвращаться к нулевой отметке шкалы, что будет свидетельствовать о работоспособности частотомера. Если же микроамперметр не реагирует на входные импульсы, придется подобрать точнее резистор R2: его сопротивление может быть от 1,8 до 5,1 кОм.

Далее подайте на вход прибора (через конденсатор С1) переменное напряжение 3...5 В с понижающего сетевого трансформатора. Теперь стрелка микроамперметра должна отклониться на некоторый угол, соответствующий частоте 50 Гц. Подключите параллельно времязадающему конденсатору еще один такой же или большей емкости. Угол отклонения стрелки увеличится.

Точно так же можно испытать устройство на втором и третьем поддиапазонах измерения, но при входных сигналах соответствующих частот.

После этого детали частотомера можно перенести с макетной панели на монтажную плату и укрепить на ней подстроечные резисторы R5-R7 (рис. 25), а плату укрепить в корпусе, конструкция которого может быть произвольная. Конденсаторы С2 и СЗ составлены из двух конденсаторов каждый, а С4 из трех. На лицевой стенке корпуса разместите микроамперметр, переключатель поддиапазонов (например, галетный ЗПЗН или другой с двумя секциями на три положения), входные гнезда (XS1, XS2) или зажимы.

Впрочем, возможно и другое конструктивное решение: плату частотомера можно встроить в корпус блока питания и его же микроамперметр использовать при измерении частоты электрических колебаний. Шкала частотомера - общая для всех поддиапазонов измерения и практически равномерная. Поэтому надо только определить начальную и конечную границы шкалы, применительно к одному из них - к поддиапазону "20...200 Гц", после чего подогнать под нее границы частот двух других поддиапазонов измерения. В дальнейшем, при переключении прибора на поддиапазон "200...2000 Гц" результат измерений, считанный по шкале, будете умножать на 10, а при измерении в поддиапазоне "2...20 кГц" - на 100. Техника градуировки такова. Переключатель SA1 установите в положение измерения в поддиапазоне "20...200 Гц", движок подстроечного резистора R5 - в положение наибольшего сопротивления и подайте на вход частотомера от звукового генератора, например ГЗ-33, сигнал частотой 20 Гц напряжением 1,5...2 В.

Сделайте на шкале отметку, соответствующую углу отклонения стрелки микроамперметра. Затем звуковой генератор перестройте на частоту 200 Гц и подстроечным резистором R5 установите стрелку прибора на конечную отметку шкалы. После этого по сигналам звукового генератора сделайте на шкале отметки, соответствующие частотам 30, 40, 50 и т. д. до 190 Гц. Позже эти участки шкалы разделите еще на несколько частей, каждая из которых будет соответствовать численному значению частоты измеряемого сигнала.

Затем частотомер переключите на второй поддиапазон измерений, подайте на его вход сигнал частотой 2000 Гц и подстроечным резистором R6 установите стрелку микроамперметра на конечную отметку шкалы. После этого на вход прибора подайте от генератора сигнал частотой 200 Гц. При этом стрелка микроамперметра должна установиться против начальной отметки шкалы, соответствующей частоте 20 Гц первого поддиапазона. Точнее установить ее на эту исходную отметку шкалы можно заменой конденсатора СЗ или подключением параллельно ему второго конденсатора, несколько увеличивающего их общую емкость.

Аналогично подгоняйте под шкалу микроамперметра границы третьего поддиапазона измеряемых частот 2...20 кГц. Возможно, пределы измерения частоты на поддиапазонах получатся иные, или вы захотите изменить их. Делайте это подбором времязадающих конденсаторов С2-С4.

Улучшение чувствительности. А может быть вы пожелаете повысить чувствительность частотомера? В таком случае простейший частотомер придется дополнить усилителем входного сигнала, используя для этого, например, аналоговую микросхему К118УП1Г (рис.26). Эта микросхема представляет собой трехкаскадный усилитель для видеоканалов телевизионных приемников, обладающий большим коэффициентом усиления. Ее корпус с 14 выводами такой же, как у микросхемы К155ЛA3, но положительное напряжение источника питания подают на вывод 7, а отрицательное - на вывод 14. С таким усилителем чувствительность частотомера увеличится до 30...50 мВ.

Рис. 26. Усилитель, повышающий чувствительность простейшего частотомера

Колебания измеряемой частоты могут быть синусоидальными, прямоугольными, пилообразными - любыми. Через конденсатор С1 они поступают на вход (вывод 3) микросхемы DA1, усиливаются и далее через выходной вывод 10 (соединенный с выводом 9) и конденсатор СЗ подаются на вход триггера Шмитта частотомера. Конденсатор С2 устраняет внутреннюю отрицательную обратную связь, ослабляющую усилительные свойства микросхемы.

Диоды VD1, VD2 и резистор R1 (рис. 24) теперь можно удалить, а на их месте смонтировать, микросхему и дополнительные электролитические конденсаторы. Микросхему К118УП1Г можно заменить на К118УП1В или К118УП1А. Но в этом случае чувствительность частотомера несколько ухудшится.

Если уж браться за создание цифрового частотомера, то делать сразу универсальный измерительный прибор, способный мерять частоты не до пары десятков мегагерц (что свойственно ), а до 1000 МГц . При всём этом, схема не сложнее стандартной, с использованием pic16f84 . Отличие лишь в установке входного делителя, на специализированной микросхеме SAB6456 . Этот электронный счетчик будет полезен для измерения частоты различного беспроводных оборудования, особенно передатчиков, приемников и генераторов сигналов в диапазонах УКВ.

Технические характеристики частотомера

- Напряжение питания: 8-20 V
- Потребляемый ток: 80 мА макс. 120 мА
- Входная чувствительность: макс. 10 мВ в 70-1000 МГц диапазон
- Период измерения: 0,08 сек.
- Частота обновления информации: 49 Гц
- Диапазон: 0,0 до 999,9 МГц, разрешение 0,1 МГц.

Особенности и преимущества схемы. Быстрая работа - короткий период измерения. Высокая чувствительность входного сигнала в диапазонах СВЧ. Переключаемое промежуточное смещение частоты для использования его совместно с приемником - в качестве цифровой шкалы.

Принципиальная схема самодельного частотомера на PIC

Список деталей частотомера

R1 - 39 k
R2 - 1 k
R3-R6 - 2,2 k
R7-R14 - 220
C1-C5, C6 - 100-n mini
C2, C3, C4 - 1 n
C7 - 100 ед.
C8, C9 - 22 p
IC1 - 7805
IC2 - SAB6456 (U813BS)
IC3 - PIC16F84A
T1 - BC546B
T2-T5 - BC556B
D1, D2 - BAT41 (BAR19)
D3 - HD-M514RD (красный)
X1 - 4.000 МГц кварц


Вся необходимая информация по прошивке микроконтроллера, а также полное описание микросхемы SAB6456, находятся в архиве . Данная схема многократно испытана и рекомендована к самостоятельному повторению.


Сегодня рассмотрим пошагово создание частотомера своими руками. Первым делом поговорим о характеристиках и особенностях прибора на pic16f628a, рассмотрим схему и особенности монтажа. Вторая схема частотомера - цифровой шкалы. Уделим внимание подбору необходимых комплектующих и остановимся детальнее на сборке. Третья схема представляет простой частотомер на микросхемах. Но обо всём по порядку.

  • Смотрите также 3 рабочие схемы для сборки

Частотомер на PIC16F628 своими руками

Первым делом рассмотрим простую и дешевую схему частотомера. Он может измерять сигналы от 16 до 100Гц с максимальной амплитудой 15В. Чувствительность высокая, разрешение - 0,01 Гц. Входной сигнал может быть синусоидальной, прямоугольной или треугольной волной.

Частотомер может использоваться во многих приложениях. Например, для наблюдения за точностью генератора, для измерения частоты сети или нахождения оборотов двигателя, соединенного с датчиком.

Схема частотомера и необходимые детали для монтажа

Файл печатной платы представлен в формате PDF, архив можно скачать ниже. Вы можете сделать плату используя метод ЛУТ.


CCP (Capture(Захват)/Compare(Сравнение)/PWM(ШИМ)) модуль PIC-микроконтроллера считывает входной сигнал. Используется только функция захвата.


Необходимые детали для сборки частотомера:
  • МК PIC 8-бит - PIC16F628A (PIC16F628-04/P).
  • 4 биполярных транзистора - BC547.
  • 2 керамических конденсатора - 22 пФ.
  • 12 резисторов - 1х4.7 кОм, 4х1 кОм, 7х330 Ом.
  • Кварц - 4 МГц.
  • 4 семисегментных индикатора (общий катод).
Радиоэлементы для изоляции:
  • Биполярный транзистор - BC547.
  • Выпрямительный диод - 1N4148
  • Оптопара - 4N25M.
  • 4 резистора - 2х1 кОм, 1х10 кОм, 1х470 Ом.
Необходимые комплектующие для сборки питания:
  • Линейный регулятор - LM7805.
  • 2 электролитических конденсатора - 100 мкФ, 16В.
  • 2 полиэфирных конденсатора - 220 нФ.
Дисплеи - красные, 7-сегментные светодиодные, 14,2 мм с общим катодом.

Перед измерением частоты входного сигнала, он должен быть преобразован в прямоугольный. Для этой цели используется схема оптической развязки с оптроном 4N25. Таким образом, входной сигнал надежно изолирован от микроконтроллера и превращается в меандр. Амплитуда сигнала не должна превышать 15В. Если это произойдет, резистор 1кОм может сгореть. Если вы хотите измерить частоту сети, вы должны использовать 220В/9В трансформатор.

Видео о сборке частотомера на PIC16F628A:

Частотомер - цифровая шкала. Схема и инструкция по монтажу

Рассматриваемое устройство выполняет функции:

  • частотомера с выводом измеренного значения частоты в герцах (до 8 разрядов);
  • цифровой шкалы с АПЧ генератора плавного диапазона (ГПД) для радиолюбительского трансивера;
  • электронных часов.
Основу устройства составляет программируемый контроллер PIC16F84 фирмы Microchip. Быстродействие и широкие функциональные возможности этого контроллера позволяют подавать сигнал частотой до 50 МГц прямо на его счетный вход, то есть можно обойтись без предварительного делителя, обычно применяемого в устройствах подобного типа.

Основные характеристики цифрового частотомера

  1. Диапазон измеряемых частот - 0–50 МГц.
  2. Диапазон программируемых значений ПЧ - 0–16 МГц.
  3. Минимальный уровень входного сигнала - 200 мВ.
  4. Время измерения частоты - 1 с.
  5. Погрешность измерения - ±1 Гц.
  6. Напряжение питания - 5±0,5 В.
  7. Ток потребления устройства - не более 30 мА.
Наличие электрически перепрограммируемой памяти данных внутри PIC16F84 позволило без специального оборудования перепрограммировать значение промежуточной частоты (ПЧ). Это дает возможность оперативно встраивать цифровую шкалу в трансивер с любым (0–16 МГц) значением промежуточной частоты.

Смотрите также видео, как собрать частотомер своими руками:

Простой частотомер на микросхеме своими руками - характеристики и схема

Параметры предлагаемого частотомера приведены в следующей таблице:

Режим работы Частотомер Частотомер Цифровая шкала
Диапазон измерений 1 Гц…20 МГц 1–200 МГц 1–200 МГц
Дискретность 1 Гц 10 Гц 100 Гц
Чувствительность 40 мВ 100 мВ 100 мВ

Данный частотомер обладает целым рядом преимуществ по сравнению с предшествующими:
  • современная дешевая и легко доступная элементная база;
  • максимальная измеряемая частота - 200 МГц;
  • совмещение в одном приборе частотомера и цифровой шкалы;
  • возможность увеличения максимальной измеряемой частоты до 1,2 ГГц при незначительной доработке входной части прибора;
  • возможность коммутации во время работы до 4 ПЧ.
Измерение частоты осуществляется классическим способом: подсчет количества импульсов за фиксированный интервал времени.

Входной сигнал через конденсатор С4 поступает на базу транзистора VT1, который усиливает входной сигнал до уровня, необходимого для нормальной работы микросхемы DD2. Микросхема DD2 193ИЕЗ представляет собой высокочастотный делитель частоты, коэффициент деления которого равен 10.

Ввиду того что в используемом микроконтроллере К1816ВЕ31 максимальная частота счетного входа Т1 f=Fкв/24, где Fкв - частота используемого кварца, а в частотомере Fкв=8,8672 МГц, сигнал с высокочастотного делителя поступает на дополнительный делитель частоты, представляющий собой десятичный счетчик DD3. Процесс измерения частоты начинается с обнуления делителя DD3, сигнал сброса которого поступает с вывода 12 микроконтроллера DD4. Сигнал разрешения прохождения измеряемого сигнала на десятичный делитель поступает с вывода 13 DD4 через инвертор DD1.1 на вывод 12 DD1.3.

По окончанию фиксированного интервала времени измерения на выводе 13 DD4 появляется высокий уровень, который через инвертор DD1.1 запрещает прохождение измеряемого сигнала на делитель DD3, и начинается процесс преобразования накопленных импульсов времени в частоту, а также подготовка данных для вывода на индикацию.

Принципиальная схема частотомера и необходимые детали


Список необходимых радиоэлементов:
  • 6 микросхем - DD1 (К555ЛА3); DD2 (К193ИЕ3); DD4 (КР1816ВЕ31); DD5, DD7 (2хК555ИР22); DD6 (К555ИД7); DD8 (К573РФ2).
  • Логическая ИС (DD3) - К555ИЕ19.
  • 17 биполярных транзисторов (VT1, VT2–VT17) - КТ368А и 16хКТ361В
  • Стабилитрон (VD1) - КС113А.
  • 7 конденсаторов - С1 (0.01 мкФ); С2, С8 (2х0.1 мкФ); С3 (56 пФ); С4 (1000 пФ); С5 (22 пФ); С6 (12 пФ).
  • Подстроечный конденсатор (С7) - 5-20 пФ.
  • Электролитический конденсатор (С9) - 3.3 мкФ.
  • 41 резистор - R1 (51 Ом); R2, R25–R40 (17х68 кОм, R2 по ошибке в схеме указана как R3); R3 (10 кОм); R4, R6 (2х560 Ом); R5 (33 Ом); R6, R7 (2х1 кОм, в схеме по ошибке два резистора R6); R8–R23 (16х20 кОм); R24 (2 кОм).
  • Кварцевый резонатор (ZQ1) - 8.86 МГц.
  • Вакуумно люминисцентный индикатор (HL1) - ИВ-18.
  • Переключатель (S1)
  • Блок переключателей (S2)
Данный прибор может работать как в высокочастотном, так и в низкочастотном диапазонах. При работе в низкочастотном диапазоне переключатель S1 необходимо установить в верхнее положение и сигнал подавать на вход 2 (вывод 9) платы частотомера. Для измерения частоты от 1 Гц до 20 МГц необходимо использовать формирователь.

Программа работы микроконтроллера находится в ПЗУ DD8, микросхема DD5 используется для мультиплексирования адресов микроконтроллера. Прошивка ПЗУ для работы прибора в качестве частотомера приведена в таблице:


Для получения максимальной эффективности использования микроконтроллера в приборе применена динамическая индикация.

При использовании частотомера в качестве цифровой шкалы на вывод 22 DD8 необходимо с помощью переключателя S2.3 подать высокий уровень. Выбор значения ПЧ производится путем соединения выводов 10,11 микросхемы DD4 с землей. Вход 3 (вывод 5) платы частотомера предназначен для включения выбранной промежуточной частоты (например, при переходе с приема на передачу). Во время работы прибора в режиме цифровой шкалы младшие разряды индикатора показывают сотни герц. Работе прибора в режиме цифровой шкалы соответствует иная прошивка ПЗУ.




Печатная плата изготовлена из двухстороннего стеклотекстолита размерами 100х130 мм. Индикатор крепится непосредственно на печатной плате двумя хомутами из обычного монтажного провода. Для установки микросхемы DD8 предусмотрена панелька. При разводке платы предусматривалась необходимость размещения транзистора VT1 в максимальной близости к DD2.

Вокруг VT1 и DD2 оставлено возможно большее количество фольги с обеих сторон с целью экранирования высокочастотных цепей. В конструкции в качестве индикатора HL1 применен ИВ-18 как наиболее популярный в радиолюбительских конструкциях. В случае необходимости миниатюризации конструкции индикатор ИВ-18 может быть заменен на ИВ-21, который имеет значительно меньшие габаритные размеры. В этом случае необходимо уменьшить напряжение накала и отрицательное напряжение на катоде согласно паспортным данным. Микросхему DD1 желательно применять серии 1533 как более высокочастотную.

Для питания частотомера используется блок питания с напряжением от -20 В до -30 В и напряжением накала - до 4,8 В при использовании индикатора ИВ-18. В указанной схеме блока питания желательно диод КД503 заменить на стабилитрон КС133, что исключает ложную подсветку сегментов индикатора.

Наладку частотомера следует начинать с проверки на обрыв всех без исключения соединительных проводников печатной платы, затем проверить на отсутствие замыкания соседних на печатной плате соединительных проводников. Сразу же после подачи питания на частотомер проконтролируйте ток потребления по напряжению +5 В. Он не должен превышать 250 мА.

Затем измерьте напряжение на коллекторе VT1, оно должно находиться в пределах 2,0–3,0 В. Установка указанного напряжения осуществляется подбором резистора R3. При безошибочном монтаже, исправных деталях и отсутствии ошибок в программе окончательное налаживание прибора заключается в точной установке частот задающего генератора микроконтроллера с помощью конденсатора С7 в соответствии с показаниями образцового частотомера.

Благодаря программно-управляемому процессу измерения можно путем незначительного изменения программы микроконтроллера применять недесятичные высокочастотные делители. Были опробованы в данном приборе микросхемы 193ПП1 (коэффициент деления - 704), 193ИЕ6 (коэффициент деления - 256). Испытания показали, что максимальная частота измеряемого сигнала достигает значения 1 ГГц. Наиболее предпочтительной оказалась микросхема 193ПЦ1, поскольку она имеет входной усилитель. Микроконтроллер К181ВЕ51 можно заменить на К1816ВЕ31, К1830ВЕ31, К1830ВЕ51 или их зарубежные аналоги - 8031, 80С31. При отсутствии микросхемы 193ИЕЗ можно заменить ее К500ИЕ137, включив ее по типовой схеме.

Видео, как собрать частотомер на одной микросхеме: