Математическое ожидание

Дисперсия непрерывной случайной величины X , возможные значения которой принадлежат всей оси Ох, определяется равенством:

Назначение сервиса . Онлайн калькулятор предназначен для решения задач, в которых заданы либо плотность распределения f(x) , либо функция распределения F(x) (см. пример). Обычно в таких заданиях требуется найти математическое ожидание, среднее квадратическое отклонение, построить графики функций f(x) и F(x) .

Инструкция . Выберите вид исходных данных: плотность распределения f(x) или функция распределения F(x) .

Задана плотность распределения f(x):

Задана функция распределения F(x):

Непрерывная случайна величина задана плотностью вероятностей
(закон распределения Релея – применяется в радиотехнике). Найти M(x) , D(x) .

Случайную величину X называют непрерывной , если ее функция распределения F(X)=P(X < x) непрерывна и имеет производную.
Функция распределения непрерывной случайной величины применяется для вычисления вероятностей попадания случайной величины в заданный промежуток:
P(α < X < β)=F(β) - F(α)
причем для непрерывной случайной величины не имеет значения, включаются в этот промежуток его границы или нет:
P(α < X < β) = P(α ≤ X < β) = P(α ≤ X ≤ β)
Плотностью распределения непрерывной случайной величины называется функция
f(x)=F’(x) , производная от функции распределения.

Свойства плотности распределения

1. Плотность распределения случайной величины неотрицательна (f(x) ≥ 0) при всех значениях x.
2. Условие нормировки:

Геометрический смысл условия нормировки: площадь под кривой плотности распределения равна единице.
3. Вероятность попадания случайной величины X в промежуток от α до β может быть вычислена по формуле

Геометрически вероятность попадания непрерывной случайной величины X в промежуток (α, β) равна площади криволинейной трапеции под кривой плотности распределения, опирающейся на этот промежуток.
4. Функция распределения выражается через плотность следующим образом:

Значение плотности распределения в точке x не равно вероятности принять это значение, для непрерывной случайной величины речь может идти только о вероятности попадания в заданный интервал. Пусть , если ее плотность вероятности имеет вид:

Математическое ожидание и дисперсия равномерно распределенной случайной величины определяются выражениями

3.8. Случайная величина X распределена равномерно на отрезке . Найти функцию распределения F (x ), математическое ожидание, дисперсию и среднее квадратичное отклонение величины.

Решение . Плотность вероятности для величины X имеет вид:

Следовательно, функция распределения, вычисляемая по формуле:

,

запишется следующим образом:

Математическое ожидание будет равно М х = (1 + 6)/2 = 3,5. Находим дисперсию и среднее квадратичное отклонение:

D x = (6 – 1) 2 /12 = 25/12, .

Нормальное распределение

Случайная величина X распределена по нормальному закону, если ее функция плотности распределения вероятностей имеет вид:

где М х – математическое ожидание;

– среднее квадратичное отклонение.

Вероятность попадания случайной величины в интервал (а , b ) находится по формуле

Р (а < X < b ) = Ф – Ф = Ф(z 2) – Ф(z 1), (5)

где Ф(z ) = – функция Лапласа.

Значения функции Лапласа для различных значений z приведены в Приложении 2.

3.9. Математическое ожидание нормально распределенной случайной величины X равно М х = 5, дисперсия равна D x = 9. Написать выражение для плотности вероятности.

3.10. Математическое ожидание и среднее квадратичное отклонение нормально распределенной случайной величины X соответственно равны 12 и 2. Найти вероятность того, что случайная величина примет значение, заключенное в интервале (14; 16).



Решение . Используем формулу (21.2), учитывая, что М х = 12, = 2:

Р (14 < X < 16) = Ф((16 – 12)/2) – Ф(14 – 12)/2) = Ф(2) – Ф(1).

По таблице значений функции Лапласа находим Ф(1) = 0,3413, Ф(2) = 0,4772. После подстановки получаем значение искомой вероятности:

Р (14 <Х < 16) = 0,1359.

3.11. Имеется случайная величина X , распределенная по нормальному закону, математическое ожидание которой равно 20, среднее квадратичное отклонение равно 3. Найти симметричный относительно математического ожидания интервал, в который с вероятностью р = 0,9972 попадет случайная величина.

Решение . Так как Р (х 1 < Х < х 2) = р = 2Ф((х 2 – М х )/ ), то Ф(z ) = р /2 = 0,4986. По таблице функции Лапласа находим значение z , соответствующее полученному значению функции Ф(z ) = 0,4986: z = 2,98. Учитывая то, что z = (х 2 – М х )/ , определяем = х 2 – М х = z = 3 · 2,98 = 8,94. Искомый интервал будет иметь вид (11,06; 28,94).

Учтем, что f (x ) = F" (x ). Тогда получим:

Подставим в выражение для математического ожидания

.

Интегрируя по частям, получаем М х = 1/ , или М х = 1/0,1.

Для определения дисперсии проинтегрируем по частям первое слагаемое. В результате получим:

.

Учтем найденное выражение для М х . Откуда

.

В данном случае М х = 10, D x = 100.

СИСТЕМЫ СЛУЧАЙНЫХ ВЕЛИЧИН

Случайной величиной называется переменная, которая может принимать те или иные значения в зависимости от различных обстоятельств, и случайная величина называется непрерывной , если она может принимать любое значение из какого-либо ограниченного или неограниченного интервала. Для непрерывной случайной величины невозможно указать все возможные значения, поэтому обозначают интервалы этих значений, которые связаны с определёнными вероятностями.

Примерами непрерывных случайных величин могут служить: диаметр детали, обтачиваемой до заданного размера, рост человека, дальность полёта снаряда и др.

Так как для непрерывных случайных величин функция F (x ), в отличие от дискретных случайных величин , нигде не имеет скачков, то вероятность любого отдельного значения непрерывной случайной величины равна нулю.

Это значит, что для непрерывной случайной величины бессмысленно говорить о распределении вероятностей между её значениями: каждое из них имеет нулевую вероятность. Однако в некотором смысле среди значений непрерывной случайной величины есть "более и менее вероятные". Например, вряд ли у кого-либо возникнет сомнение, что значение случайной величины - роста наугад встреченного человека - 170 см - более вероятно, чем 220 см, хотя и одно, и другое значение могут встретиться на практике.

Функция распределения непрерывной случайной величины и плотность вероятности

В качестве закона распределения, имеющего смысл только для непрерывных случайных величин, вводится понятие плотности распределения или плотности вероятности. Подойдём к нему путём сравнения смысла функции распределения для непрерывной случайной величины и для дискретной случайной величины.

Итак, функцией распределения случайной величины (как дискретной, так и непрерывной) или интегральной функцией называется функция , которая определяет вероятность, что значение случайной величины X меньше или равно граничному значению х .

Для дискретной случайной величины в точках её значений x 1 , x 2 , ..., x i ,... сосредоточены массы вероятностей p 1 , p 2 , ..., p i ,... , причём сумма всех масс равна 1. Перенесём эту интерпретацию на случай непрерывной случайной величины. Представим себе, что масса, равная 1, не сосредоточена в отдельных точках, а непрерывно "размазана" по оси абсцисс Оx с какой-то неравномерной плотностью. Вероятность попадания случайной величины на любой участок Δx будет интерпретироваться как масса, приходящаяся на этот участок, а средняя плотность на этом участке - как отношение массы к длине. Только что мы ввели важное понятие теории вероятностей: плотность распределения.

Плотностью вероятности f (x ) непрерывной случайной величины называется производная её функции распределения:

.

Зная функцию плотности, можно найти вероятность того, что значение непрерывной случайной величины принадлежит закрытому интервалу [a ; b ]:

вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала [a ; b ], равна определённому интегралу от её плотности вероятности в пределах от a до b :

.

При этом общая формула функции F (x ) распределения вероятностей непрерывной случайной величины, которой можно пользоваться, если известна функция плотности f (x ) :

.

График плотности вероятности непрерывной случайной величины называется её кривой распределения (рис. ниже).

Площадь фигуры (на рисунке заштрихована), ограниченной кривой, прямыми, проведёнными из точек a и b перпендикулярно оси абсцисс, и осью Ох , графически отображает вероятность того, что значение непрерывной случайной величины Х находится в пределах от a до b .

Свойства функции плотности вероятности непрерывной случайной величины

1. Вероятность того, что случайная величина примет какое-либо значение из интервала (и площадь фигуры, которую ограничивают график функции f (x ) и ось Ох ) равна единице:

2. Функция плотности вероятности не может принимать отрицательные значения:

а за пределами существования распределения её значение равно нулю

Плотность распределения f (x ), как и функция распределения F (x ), является одной из форм закона распределения, но в отличие от функции распределения, она не универсальна: плотность распределения существует только для непрерывных случайных величин.

Упомянем о двух важнейших в практике видах распределения непрерывной случайной величины.

Если функция плотности распределения f (x ) непрерывной случайной величины в некотором конечном интервале [a ; b ] принимает постоянное значение C , а за пределами интервала принимает значение, равное нулю, то такое распределение называется равномерным .

Если график функции плотности распределения симметричен относительно центра, средние значения сосредоточены вблизи центра, а при отдалении от центра собираются более отличающиеся от средних (график функции напоминает разрез колокола), то такое распределение называется нормальным .

Пример 1. Известна функция распределения вероятностей непрерывной случайной величины:

Найти функцию f (x ) плотности вероятности непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 4 до 8: .

Решение. Функцию плотности вероятности получаем, находя производную функции распределения вероятностей:

График функции F (x ) - парабола:

График функции f (x ) - прямая:

Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 4 до 8:

Пример 2. Функция плотности вероятности непрерывной случайной величины дана в виде:

Вычислить коэффициент C . Найти функцию F (x ) распределения вероятностей непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 0 до 5: .

Решение. Коэффициент C найдём, пользуясь свойством 1 функции плотности вероятности:

Таким образом, функция плотности вероятности непрерывной случайной величины:

Интегрируя, найдём функцию F (x ) распределения вероятностей. Если x < 0 , то F (x ) = 0 . Если 0 < x < 10 , то

.

x > 10 , то F (x ) = 1 .

Таким образом, полная запись функции распределения вероятностей:

График функции f (x ) :

График функции F (x ) :

Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 0 до 5:

Пример 3. Плотность вероятности непрерывной случайной величины X задана равенством , при этом . Найти коэффициент А , вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[, функцию распределения непрерывной случайной величины X .

Решение. По условию приходим к равенству

Следовательно, , откуда . Итак,

.

Теперь находим вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[:

Теперь получим функцию распределения данной случайной величины:

Пример 4. Найти плотность вероятности непрерывной случайной величины X , которая принимает только неотрицательные значения, а её функция распределения .

  • Полная группа событий. Противоположные события. Соот­ношение между вероятностями противоположных событий (с вы­водом).
  • Зависимые и независимые события. Произведение событий. Понятие условной вероятности. Теорема умножения вероятнос­тей (с доказательством).
  • Формулы полной вероятности и Байеса (с доказательством). Примеры.
  • Повторные независимые испытания. Формула Бернулли (с выводом). Примеры.
  • Локальная теорема Муавра-Лапласа, условия ее примени­мости. Свойства функции Дх). Пример.
  • Асимптотическая формула Пуассона и условия ее примени­мости. Пример.
  • Интегральная теорема Муавра-Лапласа и условия ее применимости. Функция Лапласа ф(х) и ее свойства. Пример.
  • Следствия из интегральной теоремы Муавра-Лапласа (с вы­водом). Примеры.
  • Математическое ожидание дискретной случайной величины и его свойства (с выводом). Примеры.
  • Дисперсия дискретной случайной величины и ее свойства (с вы­водом). Примеры.
  • Функция распределения случайной величины, ее определе­ние, свойства и график.
  • Непрерывная случайная величина (нов). Вероятность отдельно взятого значения нсв. Математическое ожидание и дис­персия нсв.
  • Плотность вероятности непрерывной случайной величины, ее определение, свойства и график.
  • Случайная величина, распределенная по биномиальному закону, ее математическое ожидание и дисперсия. Закон распреде­ления Пуассона.
  • Математическое ожидание и дисперсия числа и частости на­ступлений события в п повторных независимых испытаниях (с выводом).
  • Определение нормального закона распределения. Теоретико-вероятностный смысл его параметров. Нормальная кривая и зависимость ее положения и формы от параметров.
  • Функция распределения нормально распределенной случай­ной величины и ее выражение через функцию Лапласа.
  • Формулы для определения вероятности: а) попадания нормально распределенной случайной величины в заданный интер­вал; б) ее отклонения от математического ожидания. Правило «трехсигм».
  • Понятие двумерной (/7-мерной) случайной величины. При­меры. Таблица ее распределения. Одномерные распределения ее составляющих. Условные распределения и их нахождение по таб­лице распределения.
  • Ковариация и коэффициент корреляции случайных величин. Связь между екоррелированностью и независимостью случай­ных величин.
  • Понятие о двумерном нормальном законе распределения. Условные математические ожидания и дисперсии.
  • Неравенство Маркова (лемма Чебышева) (с выводом). При­мер.
  • Неравенство Чебышева (с выводом) и его частные случаидля случайной величины, распределенной по биномиальному за­кону, и для частости события.
  • Теорема Чебышева (с доказательством), ее значение и след­ствие. Пример.
  • Закон больших чисел. Теорема Бернулли (с доказательством) и ее значение. Пример.
  • Неравенство Чебышева для средней арифметической случай­ных величин (с выводом).
  • Центральная предельная теорема. Понятие о теореме Ляпу­нова и ее значение. Пример.
  • Вариационный ряд, его разновидности. Средняя арифмети­ческая и дисперсия ряда. Упрощенный способ их расчета.
  • Понятие об оценке параметров генеральной совокупности. Свойства оценок: несмещенность, состоятельность, эффективность.
  • Оценка генеральной доли по собственно-случайной выбор­ке. Несмещенность и состоятельность выборочной доли.
  • Оценка генеральной средней по собственно-случайной вы­борке. Несмещенность и состоятельность выборочной средней.
  • Оценка генеральной дисперсии по собственно-случайной выборке. Смещенность и состоятельность выборочной дисперсии (без вывода). Исправленная выборочная дисперсия.
  • Понятие об интервальном оценивании. Доверительная ве­роятность и доверительный интервал. Предельная ошибка выбор­ки. Ошибки репрезентативности выборки (случайные и систематические).
  • Формула доверительной вероятности при оценке генеральной средней. Средняя квадратическая ошибка повторной и бес­повторной выборок и построение доверительного интервала для генеральной средней.
  • Определение необходимого объема повторной и бесповтор­ной выборок при оценке генеральной средней и доли.
  • Статистическая гипотеза и статистический критерий. Ошибки 1-го и 2-го рода. Уровень значимости и мощность критерия. Принцип практической уверенности.
  • Построение теоретического закона распределения по опыт­ным данным. Понятие о критериях согласия.
  • Критерий согласия х2-Пирсона и схема его применения.
  • Функциональная, статистическая и корреляционная зависимости. Различия между ними. Основные задачи теории корреляции.
  • Линейная парная регрессия. Система нормальных уравне­ний для определения параметров прямых регрессии. Выборочная ковариация. Формулы для расчета коэффициентов регрессии.
  • Упрощенный способ:
  • Оценка тесноты связи. Коэффициент корреляции (выбороч­ный), его свойства и оценка достоверности.
    1. Плотность вероятности непрерывной случайной величины, ее определение, свойства и график.

    Про случайную величину Х говорят, что она имеет распределение (распределена) с плотностью
    на определенном участке оси абсцисс. Плотность вероятности
    , как и функция распределения F(x), является одной из форм закона распределения, но в отличие от функции распределения она существует толькодля непрерывных случайных величин . Плотность вероятности иногда называют дифференциальной функцией или дифференциальным законом распределения . График плотности вероятности
    называетсякривой распределения .

    Свойства плотности вероятности непрерывной случайной величины.



    как производная монотонно неубывающей функции F(х). ☻



    Согласно свойству 4 функции распределения . Так как F(x) - первообразная для плотности вероятности
    (т.к.
    , то по формуле Ньютона-Лейбница приращение первообразной на отрезке [а,b] – определенный интеграл
    . ☻

    Геометрически полученная вероятность равна площади фигуры, ограниченной сверху кривой распределения и опирающейся на отрезок [а,b] (рис. 3.8).

      Функция распределения непрерывной случайной величины может быть выражена через плотность вероятности по формуле :

    .

    Геометрически функция распределения равна площади фигуры, ограниченной сверху кривой распределения и лежащей левее точки х (рис. 3.9).


    Геометрически свойства 1 и 4 плотности вероятности означают, что ее график - кривая распределения - лежит не ниже оси абсцисс, и полная площадь фигуры, ограниченной кривой распределения и осью абсцисс, равна единице.

    1. Случайная величина, распределенная по биномиальному закону, ее математическое ожидание и дисперсия. Закон распреде­ления Пуассона.

    Определение . Дискретная случайная величина Х имеет биномиальный закон распределения с параметрами npq, если она принимает значения 0, 1, 2,..., m,... ,n с вероятностями

    где 0<р

    Как видим, вероятности Р(Х=m) находятся по формуле Бернулли, следовательно, биномиальный закон распределения представляет собой закон распределения числа Х=m наступлений события А в n независимых испытаниях, в каждом из которых оно может произойти с одной и той же вероятностью р.

    Ряд распределения биномиального закона имеет вид:

    Очевидно, что определение биномиального закона корректно, т.к. основное свойство ряда распределения
    выполнено, ибоесть не что иное, как сумма всех членов разложения бинома Ньютона:

    Математическое ожидание случайной величины Х, распределенной по биноминальному закону,

    а ее дисперсия

    Определение . Дискретная случайная величина Х имеет закон распределения Пуассона с параметром λ > 0, если она принимает значения 0, 1, 2,..., m, ... (бесконечное, но счетное множество значений) с вероятностями
    ,

    Ряд распределения закона Пуассона имеет вид:

    Очевидно, что определение закона Пуассона корректно, так как основное свойство ряда распределения
    выполнено, ибо сумма ряда.

    На рис. 4.1 показан многоугольник (полигон) распределения случайной величины, распределенной по закону Пуассона Р(Х=m)=Р m (λ) с параметрами λ = 0,5, λ = 1, λ = 2, λ = 3,5.

    Теорема . Математическое oжидaниe и дисперсия случайной величины, распределенной по закону Пуассона, совпадают и равны параметру λ этого закона, т.е.

    и

    Непрерывную с. в. можно задать, используя функцию, которую называют плотностью распределения или плотностью вероятности, или дифференциальной функцией распределения.

    Плотностью распределения вероятностей непрерывной с. в. Х называют функцию f(x) – первую производную от функции распределения F(x):

    Из этого определения следует, что функция распределения является первообразной для плотности распределения.

    Для описания распределения вероятностей дискретной с. в. плотность распределения не применима.

    Вероятностный смысл плотности распределения.

    Таким образом, предел отношения вероятности того, что непрерывная с. в. примет значение, принадлежащее интервалу (x, x +∆x), к длине этого интервала (при ∆x → 0) равен значению плотности распределения в точке х.

    Функция плотности характеризует каждое значение непрерывной случайной величины в отдельности, а не целый диапазон как это имеет место для функции распределения.

    Вероятность попадания непрерывной с. в. в заданный интервал.

    По формуле Ньютона – Лейбница:

    P{a < X  b}= F(b) – F(a),

    таким образом

    Нахождение функции распределения по известной функции плотности.

    Полагая в предыдущей формуле а = -∞, b = х, и заменив переменную интегрирования х на t имеем:

    F(х) = P{X  х}=P{-∞< X  х},

    следовательно

    Свойства плотности распределения

    Свойство 1. Плотность распределения – неотрицательная функция: f(x)0 (т.к. интегральная функция распределения – неубывающая функция, а плотность распределения ее первая производная).

    Свойство 2:

    Доказательство. Несобственный интеграл
    выражает вероятность события, состоящего в том, что случайная величина примет значение, принадлежащая интервалу (-∞, ∞). Очевидно, такое событие достоверно, следовательно, вероятность его равна единице.

    Геометрически это означает, что вся площадь криволинейной трапеции, ограниченной осью 0х и кривой распределения, равна единице.

    Вчастности, если все возможные значения случайной величины принадлежат интервалу (а,b), то
    .

    Возможный график плотности распределения (пример)

    f 1 (x) – плотность распределения размера выигрыша в 1-й игре

    f 2 (x) – плотность распределения размера выигрыша во 2-ой игре

    Какая игра предпочтительней?

    Числовые характеристики случайных величин. .

    Данные характеристики позволяют решать многие задачи, не зная закона распределения случайных величин.

    Характеристики положения случайной величины на числовой оси.

      Математическое ожидание это есть среднее взвешенное значений случайной величины Х, в которое абсцисса каждой точки х i входит с «весом», равным соответствующей вероятности.

    Математическое ожидание иногда называют просто средним значением с.в.

    Обозначение: m x или M [X].

    Для дискретной случайной величины

    M [X] =

    Для непрерывной случайной величины

      Мода – это наиболее вероятное значение случайной величины (то для которого вероятность p i , или плотность распределения f(x) достигает максимума).

    Обозначение: 

    Различают унимодальные распределения (имеют одну моду), полимодальные распределения (имеют несколько мод) и анимодальные (не имеют моды)

    унимодальное

      Медиана – это такое значение случайной величины х m , для которого выполняется следующее равенство:

    P{X < х m }= P{X > х m }

    Медиана делит площадь,ограниченную f(x), пополам

    Если плотность распределения случайной величины симметрична и унимодальна, то М[X],  и х m совпадают

    М[X], , х m – неслучайные величины