При производстве радиоэлектронной аппаратуры на базе микроэлектроники к выполнению соединений микроэлементов внутри микросхем, а также к монтажу микросхем в узлы и блоки предъявляются специфические требования.
Методы монтажа, пайки и сварки, используемые при производстве микросхем, отличаются от методов, используемых при производстве функциональных узлов и микромодулей. Это обусловлено тем, что большинство полупроводниковых материалов и диэлектрических подложек из керамики и стекла обладают низкой теплопроводностью, узкой зоной пластичности и малой сопротивляемостью к воздействию термических и механических напряжений.
Полупроводниковые интегральные микросхемы в отличие от тонкопленочных имеют на порядок более высокую разрешающую способность рисунка, позволяющую увеличить плотность размещения микроэлементов (т. е. повысить степень интеграции). По сравнению с толстопленочными интегральными микросхемами степень интеграции повышается больше чем в сто раз.
Внутренний монтаж любых микросхем включает в себя технологические операции по установке и закреплению одной или нескольких микросхем в корпусе и выполнению внутримикросхем-ных соединений. Для сборки и монтажа микросхем применяют различные установки. Так, для сборки кристаллов полупроводниковых интегральных микросхем размером от 0,6 х 0,6 до 1,8 х 1,8 мм используется установка ЭМ-438А, а для монтажа нескольких кристаллов в один корпус - установка ЭМ-445. Крепление кристалла микросхемы осуществляется методом пайки или приклейкой.
Внутримикросхемные соединения между напыленными на кристаллы контактными площадками микросхемы и выводами ее корпуса выполняют с помощью проволочных перемычек, в качестве которых используются медные, алюминиевые и золотые микропровода толщиной от 8 до 60 мкм.
В зависимости от сочетания применяемых материалов и конструкции выводов при сборке микросхем для соединения используется микросварка (термокомпрессионная, ультразвуковая, контактная, электронно-лучевая, лазерная) или микропайка.
Наиболее широкое применение получили термокомпрессионная и ультразвуковая микросварка и микропайка.
Термокомпрессионная микросварка заключается в одновременном воздействии на свариваемые металлы давления и повышенной температуры. Соединяемые металлы разогреваются до определенной температуры (начала рекристаллизации), при которой начинается сцепление (диффузия) очищенных от окислов поверхностей металлов при приложении даже небольшой нагрузки. Этот способ позволяет присоединять электрические выводы толщиной не более нескольких десятков микрон к контактным площадкам кристаллов, размеры которых не превышают 20...50 мкм. В процессе соединения микропровод из алюминия или золота прикладывают к кристаллу полупроводника и прижимают нагретым стержнем.
Основными параметрами, определяющими режим термокомпрессионной микросварки, являются удельное давление, температура нагрева и время сварки.
При термокомпрессионной микросварке необходим тщательный контроль этих параметров.
Область применения термокомпрессионной микросварки очень широка. Она является основным методом присоединения выводов к полупроводниковым кристаллам, используется также для присоединения проволочных микропроводников к напыленным контактным площадкам микросхем, для монтажа БИС и микросборок. С помощью термокомпрессионной микросварки осуществляется групповая сварка микросхем с планарными выводами, а также прецизионная микросварка элементов с минимальной толщиной проводников (до 5 мкм).
Ультразвуковая микросварка позволяет получить надежное соединение металлов с окисными поверхностями кристаллов при минимальном тепловом воздействии на структуру чувствительных к нагреву элементов микросхем. Этот вид микросварки применяется для соединения металлов, имеющих различные электро- и теплопроводность, а также для соединения металлов с керамикой и стеклом.
Отечественной промышленностью выпускаются ультразвуковые установки для присоединения микропровода или микроленты (диаметром до 60 мкм) из алюминия и золота к кристаллам полупроводниковых микросхем, для осуществления внутрикорпусного монтажа микросхем, а также для сборки БИС и микросборок.
Оборудование для монтажа полупроводниковых приборов и микросхем методом ультразвуковой микросварки состоит из ультразвуковой сварочной установки, принцип действия которой основан на возбуждении преобразователем механических колебаний ультразвуковой частоты в месте свариваемых деталей, и устройства для фиксации микросхемы.
В качестве преобразователей электрической энергии в механические колебания используются магнитострикционные и пьезоэлектрические устройства.
При ультразвуковой сварке неразъемное соединение металлов образуется в результате совместного воздействия на детали механических колебаний с частотой 15...60 кГц, относительно небольших сдавливающих усилий и теплового эффекта, сопровождающего сварку. В результате в сварной зоне появляется небольшая пластическая деформация, которая обеспечивает надежное соединение деталей.
В последние годы для монтажа микросхем широко применяется комбинированный способ, основанный на термокомпрессии с косвенным импульсным нагревом и наложением ультразвуковых колебаний.
Микропайка может осуществляться мягкими и твердыми припоями. Основными достоинствами микропайки являются ее относительная простота и возможность соединения деталей сложной конфигурации, что трудно выполнить при микросварке.
К мягким припоям относятся сплавы олова и свинца, индия и галлия, олова и висмута, обладающие низкой температурой плавления (обычно 140...210 °С). Эти припои наиболее часто применяются при пайке в интегральных микросхемах.
При микропайке микросхем мягкими припоями соединяемые металлы должны быть металлургически и химически совместимыми, не должны образовывать сплавов с большим сопротивлением и интерметаллических хрупких соединений в месте контакта; припои должны быть инертными при рабочей температуре схемы и полностью удаляться с места соединения и с окружающей его поверхности.
К твердым (высокотемпературным) припоям относятся сплавы на основе серебра ПСр45 и ПСр50, имеющие температуру плавления до 450... 600 °С. Эти припои используются для герметизации корпусов микросхем, для соединения серебряных или посеребренных деталей (так как припои на основе олова - свинца растворяют значительное количество серебра, изменяя характеристики контакта) и др.
В настоящее время разработаны высокотехнологичные способы микропайки. Одним из таких способов является микропайка в атмосфере горячего (до 400 °С) инертного газа или водорода, при которой предварительно облуженный участок обдувается из миниатюрных сопл горячей струей газа. Этот способ обеспечивает высокую производительность, кроме того, позволяет исключить применение флюса.
Процесс пайки упрощается при использовании дозированного припоя в виде таблеток или пасты, который предварительно наносится на места соединений. Этот способ обеспечивает точный контроль количества тепла в месте сварки, а при использовании средств автоматики позволяет регулировать время протекания тока и его величину.
Для механизированной микропайки характерны шаговые перемещения паяльного инструмента, обычно осуществляемые по программе, и прижим инструментом паянного соединения во время пайки. Автоматизация процессов пайки при соединении интегральных микросхем с монтажной платой наряду с повышением производительности труда обеспечивает повышение качества соединений.
Структура технологического процесса сборки.
Операции сборки и монтажа являются наиболее важными в технологическом процессе изготовления электронных блоков, поскольку они оказывают определяющее влияние на технические характеристики изделий и отличаются высокой трудоемкостью (до 50-60 % общей трудоемкости изготовления). При этом доля подготовки ИЭТ к монтажу составляет около
10 %, установки – более 20 %, пайки – 30 %. Автоматизация и механизация этих групп операций дает наибольший эффект в снижении трудоемкости изготовления изделий. Основными путями повышения эффективности являются: применение автоматизированного оборудования, групповая обработка ИЭТ, внедрение новой элементной базы, например поверхностно-монтируемых элементов.
Технологический процесс автоматизированной сборки состоит из подачи компонентов и деталей к месту установки, ориентации выводов относительно монтажных отверстий или контактных площадок, фиксации элементов на плате. В зависимости от характера производства сборка может выполняться:
– вручную с индексацией и без индексации адреса;
– механизированно на пантографе;
– автоматизированно параллельно на автоукладчиках и последовательно на автоматах или автоматических линиях с управлением от ЭВМ.
Подача элементов к месту установки при автоматизированной сборке происходит путем загрузки кассет с ИЭТ и платами в магазины и накопители автомата, захвата ИЭТ установочной головкой и позиционирования. Как правило, загрузка кассет осуществляется вручную, и только в ГАП эта операция выполняется с помощью автоматических транспортных средств. Остальные операции на сборочном автомате проводятся без участия оператора. Платы со смонтированными ИЭТ снимаются с автомата вручную или автоматически и направляются на полимеризацию клея.
Далее плата поступает на светомонтажный или обычный сборочный стол, где устанавливаются ИЭТ малой применяемости. После пайки, отмывки остатков флюса и исправления дефектов собранная плата проходит визуальный и функциональный контроль. Заключительной операцией процесса сборки является нанесение влагозащитного покрытия.
Рис.5.1. Схема типового процесса сборки блоков на ПП.
Применение ручной сборки экономически выгодно при изготовлении изделий не более 15-20 тыс. шт. в год партиями по 100 шт. При этом на каждой плате может быть расположено не более 100 элементов, в том числе до 20 ИМС. Достоинствами ручной сборки являются: высокая гибкость при смене объектов производства, возможность постоянного визуального контроля, что позволяет своевременно обнаруживать дефекты плат или компонентов и устранять причины брака. Недостатки – невысокая производительность, значительная трудоемкость технологического процесса, использование высококвалифицированного рабочего персонала.
При объемах выпуска изделий порядка 100-500 тыс. шт. в год с количеством расположенных на плате элементов до 500 экономически целесообразно использовать механизированную сборку с пантографом. При этом высокая гибкость сочетается с большей, чем при ручной сборке, производительностью. В условиях массового выпуска однотипных изделий бытовой ЭА (0,5-5 млн. шт. в год) целесообразно использовать автоматизированное оборудование (автоматы) или автоматические линии с управлением от ЭВМ.
Структура типового процесса сборки блоков электронной аппаратуры на печатных платах приведена на рис. 5.1.
Подготовка ЭРЭ и ИМС к монтажу.
Подготовка навесных элементов к монтажу включает следующие операции: распаковку элементов, входной контроль, контроль паяемости выводов, рихтовку, формовку, обрезку, лужение выводов, размещение элементов в технологической таре.
Изготовитель ЭРЭ должен обеспечить сохранение паяемости в течение установленного срока. Однако на практике только в Японии с ее малыми расстояниями и высокой дисциплиной поставок монтажу «с колес» подлежит не более 70% ЭРЭ, в нашей стране сроки поставки и хранения могут перекрывать гарантийные.
С завода-изготовителя ЭРЭ поступают в разнообразной таре. Большая часть ее рассчитана на загрузочные узлы сборочных автоматов, однако часть элементов, в том числе ИМС, поставляется в индивидуальной таре-спутнике, изготавливаемой из антистатического термостойкого материала.
Для распаковки ИМС в корпусах типа 4 используются автоматы моделей 141-411 или АД-901 и АД-902, технические данные которых приведены в табл. 5.1. Распаковка тары заключается в снятии с корпуса тонкой пластмассовой крышки путем ее поперечного сжатия с помощью двух стержней, которые входят в контакт с краями крышки и, сближаясь друг с другом, изгибают ее и выводят из зацепления с корпусом. Освобожденная крышка уносится в сборную емкость струей сжатого воздуха, а ИМС по направляющей соскальзывает в приемную кассету. Автомат 141-411 загружает ИМС в этажерочные кассеты, а автоматы АД-901 и АД-902 – в прямоточные.
Таблица 5.1. Характеристика автоматов распаковки ИМС.
Этажерочные и прямоточные кассеты используют для внутризаводского транспортирования ИМС с планарными выводами. В первых ИМС лежат перпендикулярно к продольной оси кассеты, каждая в своем отсеке, удерживаясь выводами. Выдача ИМС осуществляется с помощью толкателя сборочного автомата. Во вторых ИМС лежат продольно оси, одна за другой. Кассеты устанавливаются на сборочный автомат вертикально, и выгрузка ИМС происходит под действием силы тяжести и электромагнитного отсекателя механизма поштучной выдачи.
Резисторы и конденсаторы с осевыми выводами поставляют вклеенными в двухрядную липкую ленту на тканевой основе. Вклейку в ленту производят на специальных автоматах с соблюдением полярности элементов. Катушка диаметром 245-400 мм и шириной 70-90 мм содержит до 1-5 тыс. ЭРЭ. Во избежание сцепления соседних витков намотку ведут с межслойной прокладочной лентой из кабельной бумаги. С появлением «безвыводных» ИЭТ предложены ленточные носители с внутренними гнездами. Ширина носителя 8, 12 и 16 мм. Гнезда герметизируются полиэфирной пленкой предварительно нагретым инструментом.
Варианты формовки выводов ЭРЭ и установки на платы должны соответствовать ОСТ 4010.030 – 81 (рис.5.2).
Рис 5.2. Варианты установки ИЭТ на платы
Вариант I применяется для установки элементов на односторонние платы при значительных механических нагрузках. При этом используется П-образная формовка выводов элементов. Вариант II применяют для ДПП и МПП. Ему соответствует «зиг»-формовка выводов. Для выводов диаметром до 0,5 мм R min = 0,5 мм, для выводов
0,5–1,1 мм R min = 1мм. Вариант III рекомендуется для плотной компоновки элементов на плате, IV – для межплатной конструкции блока, V – для транзисторов при значительных механических нагрузках и сохранении при демонтаже, VI – для ИМС с планарными выводами. Для фиксации ЭРЭ на плате применяют образование «зига» на одном из выводов ЭРЭ при вариантах установки III и IV.
Установочный размер должен быть кратным шагу координатной сетки (2,5 мм или 1,25 мм) и обеспечиваться инструментом Предельные отклонения размеров инструмента, отверстий по H 12, H 13, валов по h 12; радиусов гибки +0,3 мм, остальные по IT 14/2.
Усилие формовки-гибки планарных выводов рассчитывается по уравнению:
где k – коэффициент, определяющий состояние поверхностей пуансона
и матрицы (1,0 – 1,2);
b – ширина вывода, мм;
δ – толщина вывода, мм;
σ b – предел прочности вывода, МПа;
Р пр – усилие прижима выводов, которое составляет (0,25-0,3) Р;
Для варианта установки IIа «зиг»-формовка выводов осуществляется по схеме, приведенной на рис. 5.3.
Рис. 5.3. Схема для «зиг»-формовки выводов радиоэлементов:
а - гибка вывода б - образование «зига».
В подающих дисках 1 имеются канавки, в которые элементы подаются неподвижными формообразующими 2. Подающие диски получают непрерывное вращение. В диски встроены подпружиненные пуансоны 3, которые при набегании на рычаги приобретают поступательное движение и образуют «зиг» на выводах. Кулачок 4 выталкивает элемент 5 из пазов диска в тару.
Размер «зига» С рассчитывается по формуле:
где d 0 , d – диаметры отверстия и вывода соответственно.
Механизация процесса подготовки выводов к монтажу осуществляется путем применения технологических приспособлений, полуавтоматов и автоматов, выбираемых в зависимости от конструкции ЭРЭ и типа производства. Полуавтомат (рис.5.4), предназначенный для подготовки выводов ЭРЭ с осевыми проволочными выводами и цилиндрической
Рис. 5.4.Полуавтомат для подготовки радиоэлементов к лужению выводов.
формой корпуса, выполняет следующие операции:
– рихтовку выводов,
– контроль ЭРЭ по электрическим параметрам с разбраковкой «годен» – «не годен»,
– зачистку и подрезку выводов,
– укладку ЭРЭ в технологические кассеты.
Радиоэлементы 7 загружаются вручную в направляющие 2, по которым с помощью отсекателя 3 подаются в механизм рихтовки 4 по одной штуке, затем в зажимы 6 механизма контроля 5. Рихтовка выводов осуществляется с помощью подпружиненных пуансонов. Контроль и разбраковка по электрическим параметрам производится прибором, подключенным к зажимам 6. При наличии бракованного элемента прибор подает сигнал в механизм отсечки брака 7 и деталь сбрасывается с ротора. Качественные ЭРЭ поступают в механизм зачистки 8, где металлическими щетками удаляются различные загрязнения. Далее ЭРЭ подаются в механизм обрезки 9, после чего загружаются в технологическую кассету 10.
Рихтовку выводов в мелкосерийном производстве осуществляют либо вручную с помощью пинцета и плоскогубцев, либо в приспособлении для рихтовки (одновременно
20 – 50 выводов ЭРЭ модели ГГ 1422-4101 с производительностью 500 шт/ч). Для подготовки ЭРЭ и ИМС к сборке используют различное оборудование (табл. 5.2).
Таблица 5.2. Оборудование для подготовки ЭРЭ и ИМС.
Наименование, тип | Тип ЭРЭ, ИМС | Производительность, шт/ч | Привод, мощность, Вт | Габариты, мм |
Полуавтомат подготовки резисторов и диодов, ГГ-2420 Установка рихтовки и обрезкивыводов транзисто-ров ГГ-2293 Автомат П-образной формов-ки выводов ЭРЭ, ГГ-1611 Автомат формовки выводов микросхем, ГГ-2629 Полуавтомат, АРСМ2.230.000 Полуавтомат, ГГ-2125 | МЛТ-0,195; 0,25; 0,5; 1,0; 2Д503; 509. МП42, МП416, ГТ309 МЛТ-0,125, 0,25, 0,5 1-1МС 14-1404. 14-3 КМ варианты III, IV Корпус 301.12-1; 401.143 | Электромеханиче-ский, 50 Электромагнит-ный, 80 Электромеханиче-ский, 180 Электромеханиче-ский, невматичес-кий,500 Электромеханический, пневмати-ческий, 800 Электромеханический, 180 | 600 ×500×800 295× 215× 275 330× 380 ×405 900×400×1500 2200× 1000 ×1500 335× 300 ×305 |
Лужение выводов может осуществляться как до, так и после формовки путем погружения в расплавленный припой. Для флюсового горячего лужения выводов ИМС (корпус 401.14-3) используют автомат модели ГГ-2630. Производительность автомата – 900 шт/ч, пределы регулирования температуры припоя 200-280 °С с точностью ±5 °С. Лужение выводов ЭРЭ групповым способом проводится на механизированной установке ГГМ2.339.002. Производительность ее – 400 кассет/ч, время выдержки кассет во флюсе и припое – 1,5 -3 с.
Напрессовка припоя – один из способов закрепления на выводах ИМС строго дозированного количества проволочного припоя путем его глубокой пластической деформации. Припой удерживается на выводах благодаря механическому заклиниванию выдавленных в пространство между соседними выводами выступов. Обычно для выводов сечением 0,3×0,1 мм (корпус 401.14 и др.) используют проволоку припоя диаметром 0,3-0,4 мм либо трубчатый припой с флюсовой сердцевиной диаметром 0,5 мм.
Размещение дискретных ЭРЭ в технологической таре позволяет повысить производительность сборки и механизировать установку элементов на платы. В качестве тары используют также и липкую ленту, в которую вклеивают ЭРЭ преимущественно с осевыми выводами по программе. Вклейка осуществляется на установке ГГ-1740. В технологических кассетах ЭРЭ загружаются в накопители, откуда по программе подаются на транспортное устройство, двигаясь по которому, попадают в зону вклейки. Производительность автомата 2400 шт/ч, количество элементов в одной программе 2-12 шт., шаг вклейки S кратен 5 мм, ширина ленты 6 или 9 мм. Полярные ИЭТ вклеиваются в ленту в однозначно ориентированном положении (рис. 5.5, а).
Рис. 5.5.Упаковка ИЭТ в однорядную ленту (а) и в кассету (б)
Элементы с однонаправленными выводами вклеиваются в однорядную перфорированную ленту шириной 18 мм. Шаг вклейки 15 мм, расстояние между выводами 2,5 или 5 мм. Транзисторы типа КГ и ИМС поставляются в специальных прямоточных одноручьевых технологических кассетах (рис.5.5, б).
Технологический процесс изготовления разработанного устройства
представляет собой комплекс действий исполнителей оборудования по преобразованию исходных материалов и комплектующих элементов в готовое
изделие. При разработке ТП ставится задача нахождения такого варианта,
который бы обеспечил наиболее экономичное решение. В соответствии ЕСТПП следует, в первую очередь, использовать типовые технологические маршруты, процессы и операции. Не рекомендуется предусматривать обработку на уникальных дорогостоящих станках за исключением тех случаев, когда это технологически и экономически оправдано. Необходимо использовать только стандартный режущий и измерительный инструмент. Следует применять наиболее совершенные формы организации производства: непрерывные и групповые поточные линии, групповые технологические процессы
групповые наладки. Разработка рабочего техпроцесса должна выполняться на базе типового.
Типовой техпроцесс сборки печатных плат состоит из следующих операций:
1. Комплектовочная операция.
2. Входной контроль микросхем и ЭРЭ.
3. Входной контроль ПП.
4. Формовка и обрезка выводов ЭРЭ.
5. Лужение выводов ИМС и ЭРЭ.
6. Подготовка ПП к монтажу.
7. Установка элементов на ПП.
8. Флюсование.
10. Удаление флюса.
11. Контроль качества пайки.
12. Защита от влаги.
Рассмотрим технологический процесс более подробно.
Согласно комплектовочной карте необходимо произвести комплектацию, то есть получить со склада все необходимые изделия: ПП, микросхемы, конденсаторы, разъемы и так далее. В технологическую карту записать дату выдачи ЭРЭ, ИМС, платы со склада. Комплектующие изделия разложить в соответствующую тару.
Входной контроль заключается в тщательной проверке ЭРЭ, ИМС и платы. На поверхности элементов не должно быть трещин, вмятин, сколов и других повреждений. Необходимо проверить наличие товарного знака, знака завода-изготовителя, ключа для определения первого вывода ИМС.
Производится сквозная проверка работоспособности ИМС на контрольно-проверочном стенде, так как отказ любой ИМС приводит к отказу всей системы.
Проверка работоспособности ЭРЭ производится выборочно. Пониженное качество отдельных деталей не исключается, исходя из следующих соображений: 1. Недостаточный выходной контроль; 2. Длительное хранение готовых изделий на складе.Возможность повреждений при транспортировке.
Производится промывка ПП в ванне со спиртобензиновой смесью. Производится тщательный осмотр внешнего вида ПП с помощью увеличительной лупы. Диэлектрическое основание платы должно быть монолитным, однородным„без вздутий, расслоений, царапин и "посторонних" включений. Цвет диэлектрика должен быть однотонный, без резких границ, выделяющих какие либо области поверхности платы. Слой металлизации должен быть ровным, плотным, без сквозных протравов, трещин, неровностей: краев, уменьшающих их минимально допустимую ширину. Сквозные металлизированные отверстия должны быть чистыми и свободными от включений любого рода.
Основным способом формовки выводов является гибка. В случаях ее механизации рабочая часть инструмента - пуансона, матрицы, штампа, как правило, соответствует форме выводов. При проектировании ПП учтены размеры ИМС, разъема и расстояния между ножками элементов. Поэтому штыревые выводы используемых микросхем и разъема не формуются. Формовка же выводов конденсаторов необходима, так как расположение выводов не соответствует расположению отверстий на ПП.
Качество выполнения паяного соединения во многом зависит от тщательности подготовки соединяемых поверхностей. Для получения прочного соединения необходима хорошая смачиваемость поверхностей флюсами и припоями, которая зависит как от свойств материалов, так и от формы шероховатости поверхностей, наличия на соединяемых поверхностях органических загрязнений, ржавчины, оксидных и жировых пленок.
Подготовка паяемых поверхностей осуществляется двумя способами: механическим и химическим. Механическая обработка заключается в удалении поверхностного слоя металла, шлифовании поверхности абразивными пастами. Однако, это не исключает повреждения поверхностей. При химическом способе паяемые поверхности обрабатываются растворителями типа спиртобензиновых и спиртофреоновых смесей. При этом образуется поверхность без оксидных и жировых пленок.
Воспользуемся химическим способом, как более удовлетворяющим нашему техпроцессу. Наиболее эффективным здесь является окунание выводов ИМС, ЭРЭ и разъема, закрепленных в специальной таре, в ванну со спиртобензиновым раствором. Затем производится промывка выводов в теплой проточной воде.
Для обеспечения высокого качества пайки применяют предварительное облуживание выводов ИМС м ЭРЭ. Лужение заключается в покрытии соединяемых деталей тонкой пленкой припоя, которая должна быть сплошной, без трещин, пор, посторонних включений, наплывов и острых выступов. Операция лужения с помощью ручного метода, то есть паяльником, малоэффективна из-за высокой трудоемкости и больших затрат времени. Поэтому наиболее эффективным является горячее лужение выводов ИМС, ЭРЭ и разъема в жидкий флюс ФКСП, а затем в ванну с расплавленным припоем ПОС - 61. При этом следует учесть, что время лужения ограничено (t < 3 сек).
Установка навесных элементов на ПП состоит из подачи их в зону установки, ориентации выводов относительно монтажных отверстий или контактных площадок и фиксации ЭРЭ и ИМС в требуемом положении. В зависимости от характера производства и конструктивных особенностей ПП установку производят вручную, механизированным или автомати-зированным способом. Автоматизированный метод применяется при сборке больших партий изделий, при этом, число устанавливаемых компонент составляет от 5 до 50 млн. штук в год. При объеме выпуска, требующем установки на платы 0,5...5 миллионов элементов/год и плотности каждой до 500 элементов, применяют оборудование с пантографами, оснащенное механизированными укладочными головками.
Применение ручной сборки экономически выгодно при производстве не более полутора сотен плат в год. Существенным достоинством ручной сборки является возможность постоянного визуального контроля, что позволяет использовать относительно большие допуски на размеры выводов, контактных площадок и монтажных отверстий, делает возможным обнаружение дефектов ПП и компонентов. В данном случае установка ИС и ЭРЭ производится на плате рядами, но ориентация ИМС в разных рядах осуществляется неодинаково из-за различия в размерах устанавливаемых ИМС и ЭРЭ, их большого числа. Из сказанного можно сделать вывод, что использование механизированных и автоматизированных линий не является оправданным.
Элементы устанавливаются на ПП согласно чертежа в следующей последовательности: ИМС, резисторы, диоды, транзисторы, конденсаторы, разъем. После установки выводы подгибаются с противоположной стороны, фиксируя тем самым элементы. При установке ИМС должен быть предусмотрен отвод статического электричества от монтажника с помощью заземленного браслета.
Механизм действия флюса заключается в том, что оксидные пленки металла и припоя растворяются, разрыхляются и всплывают на поверхность флюса. Флюсы служат для уменьшения сил поверхностного натяжения расплавленного припоя на границе металл-припой-флюс. Правильный выбор флюса обеспечивает качественное соединение и существенно влияет на скорость и степень завершенности процесса пайки. Выбранный флюс должен быть химически активным и растворять оксиды паяемых металлов, термически стабилен и выдерживать температуру пайки без испарения или разложения.
Флюсование можно производить различными методами: кистью, погружением, протягиванием, накатыванием, распылением, вращающимися щетками. В среднесерийном производстве используется пенное или волновое флюсование. Широкое применение при осуществлении монтажных соединений получили бескислотные флюсы. Флюсы на основе канифоли не оказывают коррозийного действия.
Процесс пайки контактных соединений включает в себя:
фиксацию соединяемых элементов с предварительно подготовленными поверхностями для пайки;
нагрев поверхностей пайки до заданной температуры в течение ограниченного времени;
введение в зону флюса припоя в необходимых и достаточных для пайки дозах;
плавление припоя с максимальным смачиванием им поверхности пайки;
остывание припоя в условиях, исключающих взаимное перемещение паяемых деталей.
Наилучшее качество пайки обеспечивает эвтектический припой. Важное его свойство – узкий температурный интервал кристаллизации. При наличии широкого интервала кристаллизации необходимо поддерживать неизменным положением паяемых поверхностей при охлаждении припоя.
После пайки необходимо тщательно очистить узлы и паяные соединения от загрязнений, способных привести к коррозии и снижению сопротивления изоляции диэлектрических материалов. Выбор способа очистки зависит от степени и характера загрязнения. Среду для отмывки выбирают в зависимости от применяемых флюсов. При малых объемах производства узлы ЭВА последовательно промывают в нескольких ваннах со специальными виброустановками частотой 50 Гц и амплитудой 1-2 мм. В нашем случае эффективно использовать последовательное погружение в ванну со спиртобензиновой смесью, затем в ванну с горячей и холодной водой. Продолжительность выдержки в каждой ванне составляет около 1 минуты.
Производится визуальный контроль качества пайки. Паяная поверхность должна быть блестящей, ровной, без вздутий, раковин и острых выступов припоя. Не должно быть наплывов олова с одного проводника на другой. Дефекты устраняются с помощью паяльника и флюса ФКСп путем нанесения небольшого количества флюса на место дефекта и снятия избытка олова паяльником. Осмотр проводится с помощью увеличительного стекла. Испытание на вибропрочность подвергается 2% плат из каждой партии, но не менее 3 штук. Соединения выводов навесных деталей в отверстиях платы должны выдержать усилия до 0.5 кг.
Основными электроизоляционными материалами являются пропиточные лаки, компаунды, покровные лаки и эмали. Эмали и покровные лаки используют для обволакивания. Они состоят из основы и растворителя, должны быстро сохнуть и образовывать блестящую пленку, хорошо сцепляющуюся с покрываемой поверхностью.
Для устранения климатических воздействий и повышения коррозийной стойкости блок равномерно покрывают тонким слоем лака. Для этого его опускают в ванну с лаком УР 231, затем вынимают и высушивают горячим воздухом при t=40 – 60 0 С. После этого блок ставится в тару, упаковывается и отправляется заказчику.