Электрический ток в вакууме может проходить при условии, что в него будут помещены свободные носители заряда. Ведь вакуум это отсутствие, какого либо вещества. А значит, нет никаких носителей зарядов, чтобы обеспечить ток. Понятие вакуум можно определить так, когда длинна свободного пробега молекулы больше размеров сосуда.

Для того чтобы выяснить каким же образом можно обеспечить прохождение тока в вакууме проведем опыт. Для него нам понадобится электрометр и вакуумная лампа. То есть стеклянная колба с вакуумом, в которой находятся два электрода. Один, из которых выполнен в виде металлической пластины назовем его анод. А второй в виде проволочной спирали из тугоплавкого материала назовём его катод.

Подсоединим электроды лампы к электрометру таким образом, чтобы катод был подключён к корпусу электрометра, а анод к стержню. Сообщим заряд электрометру. Поместив положительный заряд на его стержень. Мы увидим, что заряд сохранится на электрометре, несмотря на наличие лампы. Это и не удивительно ведь между электродами в лампе нет носителей зарядов, то есть не может возникнуть ток, чтобы электрометр разрядился.

Рисунок 1 — вакуумная лампа, подключённая к заряженному электрометру

Теперь подключим к катоду в виде проволочной спирали источник тока. При этом катод разогреется. И мы увидим, что заряд электрометра начнет уменьшаться, пока совсем не исчезнет. Как же это могло произойти ведь в зазоре между электродами лампы небыли носителей заряда, чтобы обеспечить ток проводимости.

Очевидно, что носители заряда каким-то образом появились. А произошло это, потому что при нагревании катода в пространство между электродами эмитировались электроны с поверхности катода. Как известно в металлах есть свободные электроны проводимости. Которые способны перемещаться в объёме металла между узлами решётки. Но чтобы покинуть металл им недостаточно энергии. Так как их удерживают Кулоновские силы притяжения между положительными ионами решётки и электронами.

Электроны совершают хаотическое тепловое движение, перемещаясь по проводнику. Подходя к границе металла, где отсутствуют положительные ионы, они замедляются и в итоге возвращаются внутрь под действием силы Кулона, которая стремится приблизить два разноименный заряда. Но если металл подогреть, то тепловое движение усиливается, и электрон приобретает достаточно энергии чтобы покинуть поверхность металла.

При этом вокруг катода образуется так называемое электронное облако. Это электроны, вышедшие из поверхности проводника, и при отсутствии внешнего электрического поля они вернутся обратно в него. Так как, теряя электроны, проводник заряжается положительно. Это тот случай если бы мы сначала подогрели катод, а электрометр при этом был бы разряжен. Поле бы внутри при этом отсутствовало.

Но поскольку на электрометре есть заряд, он создает поле, которое заставляет двигаться электроны. Помните на аноде у нас положительный заряд к нему, и стремятся электроны под действием поля. Таким образом, в вакууме наблюдается электрический ток.

Если скажем, мы подключим электрометр наоборот, что при этом произойдет. Получится, что на аноде лампы будет отрицательный потенциал, а на катоде положительный. Все электроны, вылетевшие с поверхности катода, тут же вернутся обратно под действием поля. Поскольку катод теперь будет иметь еще больший положительный потенциал, он будет притягивать электроны. А на аноде будет избыток электронов отталкивающих электроны с поверхности катода.

Рисунок 2 — зависимость ток от напряжения для вакуумной лампы

Такая лампа называется вакуумный диод. Она способна пропускать ток только в одном направлении. Вольтамперная характеристика такой лампы состоит из двух участков. На первом участке выполняется закон Ома. То есть с увеличением напряжения все больше электронов вылетевших с катода долетают до анода и тем самым увеличивается ток. На втором участке все электроны, вылетевшие с катода, долетают до анода и с дальнейшим увеличением напряжения ток не увеличивается. Просто нет нужного количества электронов. Этот участок называется насыщением.

Движение заряженных свободных частиц, полученных в результате эмиссии, в вакууме под действием электрического поля

Описание

Для получения электрического тока в вакууме необходимо наличие свободных носителей. Получить их можно за счет испускания электронов металлами - электронной эмиссии (от латинского emissio - выпуск).

Как известно, при обычных температурах электроны удерживаются внутри металла, несмотря на то, что они совершают тепловое движение. Следовательно, вблизи поверхности существуют силы, действующие на электроны и направленные внутрь металла. Это силы, возникающие вследствие притяжения между электронами и положительными ионами кристаллической решетки. В результате в поверхностном слое металлов появляется электрическое поле, а потенциал при переходе из внешнего пространства внутрь металла увеличивается на некоторую величину Dj . Соответственно потенциальная энергия электрона уменьшается на e Dj .

Распределение потенциальной энергии электрона U для ограниченного металла показано на рис. 1.

Диаграмма потенциальной энергии электрона U в ограниченном металле

Рис. 1

Здесь W0 - уровень энергии покоящегося электрона вне металла, F - уровень Ферми (значение энергии, ниже которой все состояния системы частиц (фермионов), при абсолютном нуле заняты), E c - наименьшая энергия электронов проводимости (дно зоны проводимости). Распределение имеет вид потенциальной ямы, ее глубина e Dj =W 0 - E c (электронное сродство); Ф = W 0 - F - термоэлектронная работа выхода (работа выхода).

Условие вылета электрона из металла: W і W 0 , где W - полная энергия электрона внутри металла.

При комнатных температурах это условие выполняется лишь для ничтожной части электронов, значит, для увеличения числа покидающих металл электронов необходимо затратить определенную работу, то есть сообщить им дополнительную энергию, достаточную для вырывания из металла, наблюдая электронную эмиссию: при нагревании металла - термоэлектронную, при бомбардировке электронами или ионами - вторичную, при освещении - фотоэмиссию.

Рассмотрим термоэлектронную эмиссию.

Если испущенные раскаленным металлом электроны ускорить электрическим полем, то они образуют ток. Такой электронный ток может быть получен в вакууме, где столкновения с молекулами и атомами не мешают движению электронов.

Для наблюдения термоэлектронной эмиссии может служить пустотная лампа, содержащая два электрода: один в виде проволоки из тугоплавкого материала (молибден, вольфрам и др.), накаливаемый током (катод), и другой, холодный электрод, собирающий термоэлектроны (анод). Аноду чаще всего придают форму цилиндра, внутри которого расположен накаливаемый катод.

Рассмотрим схему для наблюдения термоэлектронной эмиссии (рис. 2).

Электрическая схема для наблюдения термоэлектронной эмиссии

Рис. 2

Цепь содержит диод Д , подогреваемый катод которого соединен с отрицательным полюсом батареи Б , а анод - с ее положительным полюсом; миллиамперметр mA , измеряющий силу тока через диод Д , и вольтметр V, измеряющий напряжение между катодом и анодом. При холодном катоде тока в цепи нет, так как сильно разряженный газ (вакуум) внутри диода не содержит заряженных частиц. Если катод раскалить с помощью дополнительного источника, то миллиамперметр зарегистрирует появление тока.

При постоянной температуре катода сила термоэлектронного тока в диоде возрастает с увеличением разности потенциалов между анодом и катодом (см. рис. 3).

Вольтамперные характеристики диода при различных температурах катода

Рис. 3

Однако эта зависимость не выражается законом аналогичным закону Ома, по которому сила тока пропорциональна разности потенциалов; эта зависимость носит более сложный характер, графически представленный на рисунке 2, например, кривой 0-1-4 (вольтамперная характеристика). При увеличении положительного потенциала анода сила тока возрастает в соответствии с кривой 0-1, при дальнейшем возрастании анодного напряжения сила тока достигает некоторого максимального значения i н , называемого током насыщения диода, и почти перестает зависеть от анодного напряжения (участок кривой 1-4).

Качественно такая зависимость тока диода от напряжения объясняется следующим образом. При разности потенциалов равной нулю сила тока через диод (при достаточном расстоянии между электродами) тоже равна нулю, так как электроны, покинувшие катод, образуют вблизи него электронное облако, создающее электрическое поле, тормозящее вновь вылетающие электроны. Эмиссия электронов прекращается: сколько электронов покидает металл, столько же в него возвращается под действием обратного поля электронного облака. При увеличении анодного напряжения концентрация электронов в облаке уменьшается, тормозящее действие его уменьшается, анодный ток увеличивается.

Зависимость силы тока диода i от анодного напряжения U имеет вид:

где a - коэффициент, зависящий от формы и расположения электродов.

Это уравнение описывает кривую 0-1-2-3, и носит название закона Богуславского - Лэнгмюра или “закона 3/2”.

Когда потенциал анода становится настолько большим, что все электроны, покидающие катод за каждую единицу времени, попадают на анод, ток достигает максимального значения и перестает зависеть от анодного напряжения.

При увеличении температуры катода вольтамперная характеристика изображается кривыми 0-1-2-5, 0-1-2-3-6 и т.д., то есть при разных температурах различными оказываются значения тока насыщения i н , которые быстро увеличиваются с возрастанием температуры. Одновременно увеличивается анодное напряжение, при котором устанавливается ток насыщения.

Урок № 40-169 Электрический ток в газах. Электрический ток в вакууме.

В обычных условиях газ - это диэлектрик (R), т.е. состоит из нейтральных атомов и молекул и не содержит свободных носителей электрического тока. Газ-проводник - это ионизированный газ, он обладает электронно-ионной проводимостью.

Воздух- диэлектрик

Ионизация газа - это распад нейтральных атомов или молекул на положительные ионы и электроны под действием ионизатора (ультрафиолетовое, рентгеновское и радиоактивное излучения; нагрев) и объясняется распадом атомов и молекул при столкновениях на высоких скоростях. Газовый разряд – прохождение электрического тока через газ. Газовый разряд наблюдается в газоразрядных трубках (лампах) при воздействии электрического или магнитного поля.

Рекомбинация заряженных частиц

Газ перестает быть проводником, если ионизация прекращается, это происходит вследствие рекомбинации (воссоединения противоположно заряженных частиц). Виды газовых разрядов: самостоятельный и несамостоятельный.
Несамостоятельный газовый разряд - это разряд, существующий только под действием внешних ионизаторов Газ в трубке ионизирован, на электроды подается напряже­ние (U) и в трубке возникает электрический ток(I). При увеличении U возрастает сила тока I Когда все заряженные частицы, образующиеся за секунду, достигают за это время электро­дов (при некотором напряжении (U*), ток достигает насыщения (I н). Если действие иони­затора прекращается, то прекращается и разряд (I= 0).Самостоятельный газовый разряд - разряд в газе, сохраняющийся после прекращения действия внешнего ионизатора за счет ионов и электронов, возникших в результате ударной ионизации (= ионизации электрического удара); возникает при увеличении разности потенциалов между электродами (возникает электронная лавина). При некотором значении напряжения (U пробоя) сила тока снова возрастает. Ионизатор уже не нужен для поддер­жания разряда. Происходит ионизация электронным ударом . Несамостоятельный газовый разряд может переходить в самостоятельный газовый разряд при U а = U зажигания.Электрический пробой газа - переход несамостоятельного газового разряда в самостоятельный. Типы самостоятельного газового разряда: 1. тлеющий - при низких давлениях (до нескольких мм рт.ст.) - наблюдается в газосветных трубках и газовых лазерах. (лампы дневного света) 2. искровой - при нормальном давлении (P = P атм )и высокой напряженности электрического поля Е (молния - сила тока до сотен тысяч ампер). 3. коронный - при нормальном давлении в неоднородном электрическом поле (на острие, огни святого Эльма).

4. дуговой - возникает между близко сдвинутыми электродами - большая плотность тока, малое напряжение между электродами, (в прожекторах, проекционной киноаппаратуре, сварка, ртутные лампы)

Плазма - это четвертое агрегатное состояние вещества с высокой степенью ионизации за счет столкновения молекул на большой скорости при высокой температуре; встречается в природе: ионосфера – слабо ионизированная плазма, Солнце - полностью ионизированная плазма; искусственная плазма – в газоразрядных лампах. Плазма бывает: 1. - низкотемпературная Т 10 5 К. Основные свойства плазмы: - высокая электропроводность; - сильное взаимодействие с внешними электрическими и магнитными полями. При Т = 20∙ 10 3 ÷ 30∙ 10 3 К любое вещество - плазма. 99% вещества во Вселенной - плазма.

Электрический ток в вакууме.

Вакуум – сильно разреженный газ, соударений молекул практически нет, длина свободного пробега частиц (расстояние между столкновениями) больше размеров сосуда (Р « Р~10 -13 мм рт. ст.). Для вакуума характерна электронная проводимость (ток – движение электронов), сопротивление практически отсутствует (R
). В вакууме: - электрический ток невозможен, т.к. возможное количество ионизированных молекул не может обеспечить электропроводность; - создать электрический ток в вакууме можно, если использовать источник заряженных частиц; - действие источника заряженных частиц может быть основано на явлении термоэлектронной эмиссии. Термоэлектронная эмиссия - явление вылета свободных электронов с поверхности нагретых тел, испускание электронов твердыми или жидкими телами происходит при их нагревании до температур, соответствующих видимому свечению раскаленного металла. Нагретый металлический электрод непрерывно испускает электроны, образуя вокруг себя электронное облако. В равновесном состоянии число электронов, покинувших электрод, равно числу электронов, возвратившихся на него (т.к. электрод при потере электронов заряжается положительно). Чем выше температура металла, тем выше плотность электронного облака. Электрический ток в вакууме возможен в электронных лампах. Электронная лампа - устройство, в котором применяется явление термоэлектронной эмиссии.


Вакуумный диод.

Вакуумный диод - это двухэлектродная (А- анод и К - катод) электронная лампа. Внутри стеклянного баллона создается очень низкое давление (10 -6 ÷10 -7 мм рт. ст.), Нить накала, помещена внутрь катода для его нагревания. Поверхность нагретого катода испускает электроны. Если анод соединен с “+” источника тока, а катод с “–”, то в цепи протекает постоянный термоэлектронный ток. Вакуумный диод обладает односторонней проводимостью. Т.е. ток в аноде возможен, если потенциал анода выше потенциала катода. В этом случае электроны из электронного облака притягиваются к аноду, создавая электрический ток в вакууме.

ВАХ (вольтамперная характеристика) вакуумного диода.

Ток на входе диодного выпрямителя При малых напряжениях на аноде не все электроны, испускаемые катодом, достигают анода, и ток небольшой. При больших напряжениях ток достигает насыщения, т.е. максимального значения. Вакуумный диод обладает односторонней проводимостью и используется для выпрямления переменного тока.

Электронные пучки - это поток быстро летящих электронов в электронных лампах и газоразрядных устройствах. Свойства электронных пучков: - отклоняются в электрических полях; - отклоняются в магнитных полях под действием силы Лоренца; - при торможении пучка, попадающего на вещество, возникает рентгеновское излучение; - вызывает свечение (люминесценцию) некоторых твердых и жидких тел (люминофоров); - нагревают вещество, попадая на него.

Электронно - лучевая трубка (ЭЛТ)

- используются явления термоэлектронной эмиссии и свойства электронных пучков. Состав ЭЛТ: электронная пушка, горизонтальные и вертикальные отклоняющие пластины-электродов и экран. В электронной пушке электроны, испускаемые подогревным катодом, проходят через управляющий электрод-сетку и ускоряются анодами. Электронная пушка фокусирует электронный пучок в точку и изменяет яркость свечения на экране. Отклоняющие горизонтальные и вертикальные пластины позволяют перемещать электронный пучок на экране в любую точку экрана. Экран трубки покрыт люминофором, который начинает светиться при бомбардировке его электронами. Существуют два вида трубок: 1. с электростатическим управлением электронного пучка (отклонение электронного пучка только электрическим полем) 2. с электромагнитным управлением (добавляются магнитные отклоняющие катушки). Основное применение ЭЛТ: кинескопы в телеаппаратуре; дисплеи ЭВМ; электронные осциллографы в измерительной технике. Экзаменационный вопрос 47. В каком из перечисленных ниже случаев наблюдается явление термоэлектронной эмиссии? А. Ионизация атомов под действием света. Б. Ионизация атомов в результате столкнов ений при высокой температуре. В. Испускание электронов с поверхности нагретого катода в телевизионной трубке. Г. При прохождении электрического тока через раствор электролита.

Электрический ток может образоваться не только в металлах, но и в вакууме, например в радиолампах, в электронно-лучевых трубках. Выясним природу тока в вакууме.

В металлах имеется большое количество свободных, беспорядочно движущихся электронов. Когда электрон подходит к поверхности металла, то силы притяжения, действующие на него со стороны положительных ионов и направленные внутрь, препятствуют выходу электрона из металла. Работа, которую надо совершить для удаления электрона из металла в вакууме, называется работой выхода. Для разных металлов она различна. Так, для вольфрама она равна 7,2*10 -19 дж. Если энергия электрона меньше работы выхода, он не может покинуть металл. Много электронов даже при комнатной температуре, энергия которых не намного больше работы выхода. Покинув металл, они удаляются от него на небольшое расстояние и под действием сил притяжения ионов возвращаются в металл, в результате чего вблизи поверхности образуется тонкий слой выходящих и возвращающихся электронов, находящихся в динамическом равновесии. Вследствие потери электронов поверхность металла заряжается положительно.

Чтобы электрон покинул металл, он должен совершить работу против сил отталкивания электрического поля электронного слоя и против сил электрического поля положительно заряженной поверхности металла (рис. 85. а). При комнатной температуре почти нет электронов, которые могли бы выйти за двойной заряженный слой.

Чтобы электроны могли вылететь за пределы двойного слоя, им надо иметь энергию намного больше, чем работа выхода. Для этого извне электронам сообщается энергия, например нагреванием. Испускание электронов нагретым телом называется термоэлектронной эмиссией. Она является одним из доказательств наличия свободных электронов в металле.

Явление термоэлектронной эмиссии можно наблюдать на таком опыте. Зарядив электрометр положительно (от наэлектризованной стеклянной палочки), соединим его проводником с электродом А демонстрационной вакуумной лампы (рис. 85, б). Электрометр не разряжается. Замкнув цепь, накалим нить К. Видим, стрелка электрометра опадает - электрометр разряжается. Электроны, испускаемые накаленной нитью, притягиваются положительно заряженным электродом А и нейтрализуют его заряд. Поток термоэлектронов от нити накала к электроду А под действием электрического поля образовал электрический ток в вакууме.

Если электрометр зарядить отрицательно, то он в таком опыте разряжаться не будет. Вылетающие из нити накала электроны теперь не притягиваются электродом А, а наоборот, отталкиваются от него и возвращаются обратно к нити накала.

Соберем электрическую цепь (рис. 86). При ненагретой нити К цепь между ней и электродом А разомкнута - стрелка гальванометра стоит на нуле. В его цепи тока нет. Замкнув ключ, нагреем нить накала. По цепи гальванометра пошел ток, так как термоэлектроны замкнули цепь между нитью накала и электродом А, образовав тем самым электрический ток в вакууме. Электрический ток в вакууме есть направленный поток электронов под действием электрического поля. Скорость направленного движения электронов, образующих ток в вакууме, в миллиарды раз больше скорости направленного движения электронов, образующих ток в металлах. Так, скорость потока электронов у анода ламп радиоприемника достигает нескольких тысяч километров в секунду.

Это краткий пересказ.

Работа над полной версией продолжается


Лекция 20

Ток в вакууме

1. Замечание о вакууме

Электрического тока в вакууме нет, т.к. в термодинамическом вакууме отсутствуют какие-либо частицы.

Однако наилучший достигнутый практически вакуум составляет

,

т.е. огромное количество частиц.

Тем не менее, когда говорят о токе в вакууме, подразумевают идеальный в термодинамическом смысле вакуум, т.е. полное отсутствие частиц. За протекание тока отвечают частицы, полученные из какого-либо источника.

2. Работа выхода

Как известно, в металлах существует электронный газ, который удерживается силой притяжения к кристаллической решетке. В нормальных условиях энергия электронов не велика, поэтому они удерживаются внутри кристалла.

Если подходить к электронному газу с классических позиций, т.е. считать, что он подчиняется распределению Максвелла-Больцмана, то очевидно, что существует большая доля частиц, скорости которых выше средних. Следовательно, эти частицы обладают достаточной энергией, чтобы вырваться за пределы кристалла и образовать вблизи него электронное облако.

Поверхность металла при этом заряжается положительно. Образуется двойной слой, который препятствует удалению электронов от поверхности. Следовательно, чтобы удалить электрон, необходимо сообщить ему дополнительную энергию.

Определение: Работой выхода электронов из металла называется энергия, которую необходимо сообщить электрону, чтобы удалить его с поверхности металла в бесконечность в состоянии с нулевой E k .

Для разных металлов работа выхода различна.



Металл

Работа выхода, эВ

1,81

3. Электронная эмиссия.

В обычных условиях энергия электронов достаточно мала и они связаны внутри проводника. Существуют способы сообщения электронам дополнительной энергии. Явление испускания электронов при внешнем воздействии называется электронной эмиссией, и было открыто Эдисоном в 1887 году. В зависимости от способа сообщения энергии различают 4 вида эмиссии:

1. Термоэлектронная эмиссия (ТЭЭ), способ – подвод тепла (нагрев).

2. Фотоэлектронная эмиссия (ФЭЭ), способ – освещение.

3. Вторичная электронная эмиссия (ВЭЭ), способ – бомбардировка частицами.

4. Автоэлектронная эмиссия (АЭЭ), способ – сильное электрическое поле.

4. Автоэлектронная эмиссия

Под действием сильного электрического поля электроны могут вырываться с поверхности металла.

Данной величины напряженности хватает, чтобы вырвать электрон.

Данное явление называется холодной эмиссией. Если поле достаточно сильное, то число электронов может стать большим, а, следовательно, большим ток. По закону Джоуля – Ленца будет выделяться большое количество теплоты и АЭЭ может перейти в ТЭЭ.

5. Фотоэлектронная эмиссия (ФЭЭ)

Явление фотоэффекта известно достаточно давно, смотри «Оптика».

6. Вторичная электронная эмиссия (ВЭЭ)

Это явление применяется в фотоэлектронных умножениях (ФЭУ).

При работе происходит лавинообразное нарастание числа электронов. Применяется для регистрации слабых световых сигналов.

7. Вакуумный диод.

Для изучения ТЭЭ применяют устройство, которое называется вакуумный диод. Чаще всего конструктивно он представляет собой два коаксиальных цилиндра, помещенных в стеклянную вакуумную колбу.

Нагрев катода осуществляется электрическим током прямым или косвенным способом. При прямом – ток проходит через сам катод, при косвенном – внутри катода помещают дополнительный проводник – нить накала. Разогрев происходит до достаточно высоких температур, поэтому катод делают сложным. Основа – тугоплавкий материал (вольфрам), а покрытие – материал с малой работой выхода (цезий).

Диод относится к нелинейным элементам, т.е. он не подчиняется закону Ома. Говорят, что диод – это элемент с односторонней проводимостью. Большая часть ВАХ диода описывается законом Богуславского – Ленгмюра или законом «3/2»

При повышении температуры накала ВАХ сдвигается вверх и ток насыщения растет. Зависимость плотности тока насыщения от температуры описывается законом Ричардсона – Дешмана

Методами квантовой статистики можно получить эту формулу с const = B одинаковой для всех металлов. Эксперимент показывает, что константы различны.

8. Однополупериодный выпрямитель


9. Двухполупериодный выпрямитель (самостоятельно).

10. Применение ламп.

К достоинствам ламп относят

· лёгкость управления потоком электронов,

· большая мощность,

· большой участок почти линейной ВАХ.

· Лампы используют в мощных усилителях.

К недостаткам относятся:

· низкий КПД,

· высокое потребление энергии.