Выполнила: О.М. Смирнова учитель биологии Муниципальное образовательное учреждение Уренская средняя общеобразовательная школа




1.Рассмотрите внешнее строение побега сосны. Как располагаются хвоинки на побеге? Каков внешний вид хвоинки? 2.Рассмотрите внешнее строение побега ели. Как располагаются хвоинки на побеге? Чем отличается внешний вид хвои ели от хвои сосны? 3.Рассмотрите микропрепарат «Хвоя сосны» под микроскопом при увеличении сначала в 56, а затем в 300 раз. На поперечном разрезе хвои найдите плотную кожицу, покрывающую хвоинку снаружи, и устьица в углублениях. Подсчитайте количество устьиц. 4.Почему хвоя сосны испаряет много влаги?





Сосна – многолетнее растение, достигающее в высоту 30-40м. Нижние части стволов лишены ветвей. У старых сосен первые сучья начинаются на уровне не менее чем 10 м от земли. Сосна очень светолюбива. Поэтому её нижние ветки довольно рано отмирают. Под пологом других деревьев она расти и возобновляться не может. Игловидные листья сосны – хвоинки – достигают 3-4 см длины. Хвоинки расположены по две на сильно укороченных побегах. На зиму у сосны, как и большинства хвойных деревьев, хвоя не опадает, а держится на растении 2-3 года. Опадают хвоинки вместе с укороченными стеблями. Хвоинки покрыты толстенной кожицей. Устьиц немного, они располагаются рядами и находятся в углублениях. Сосудистых пучков в листе всего два, и они не имеют боковых ответвлений. В силу этих особенностей сосна экономно испаряет влагу и легко переносит засуху. Листья ели тоже хвоинки, но они гораздо короче и более колючие.

Лекция. Лист.

Лист – один из наиболее важных и специфических органов растения.

Лист (лат. folium, греч. phyllon) – боковой, плоский (дорзовентральный) орган, обладающий ограниченным ростом и приспособленный для выполнения функций: фотосинтеза, транспирации и газообмена.

Форма листа способствует созданию максимальной фотосинтезирующей поверхности.

Роль и основные функции листа.

1. Главное значение листа состоит в том, что им усваивается солнечная энергия, которая связывается в виде органических соединений и затем используется не только растениями, но и всеми другими организмами Земли. Как отмечал К.А.Тимирязев, растения выполняют космическую роль, являясь посредниками между космосом и всеми остальными обитателями Земли. И главная роль в этом посредничестве принадлежит листу. Подчёркивая это, К.А.Тимирязев писал, что «в листе выражается вся сущность растения. Растение – это лист».

Т.о, лист – наиболее важный и специфический орган растения, так как преимущественно в нём происходит процесс фотосинтеза . В первичной коре стебля тоже есть хлоропласты, но их не так много и фотосинтетическая поверхность мала.

Лист – это своеобразная лаборатория синтеза органических веществ. 80% всего фотосинтеза обеспечивается листьями.

2. Регулируемое испарение воды листьями (транспирация). Транспирация – это не только физический, но и физиологический процесс, регулируемый листом.

Главная роль транспирации:

1) регуляция поступления воды в корни и её передвижение по сосудам;

2) терморегуляция, предохранение растения от перегрева.

Растения лесов и пустынь испаряют, как правило, больше воды, чем растения лесов, болот и т.д..

3. Газообмен.

Дополнительные функции:

4. Механическая функция – выражается в том, что мягкие ткани листа укреплены арматурными механическими тканями, находящимися в жилках, и впоследствии стела стебля укрепляется и формируется за счёт листовых следов.

5. Запасающая функция для листа не очень характерна. Чаще всего в листьях может запасаться вода (листовые суккуленты: алоэ, агавы, гаворция и др.).

6. Выделительная функция обеспечивается за счёт различных желёзок, расположенных на листе и выделяющих эфирные масла, воду, соли и т.д..

7. Специфические функции могут быть у листа при метаморфозах.

Общие морфологические особенности листа.

1 особенность . Основное отличие листа от стебля и корня в том, что лист не осевой, а плоскостной орган, имеющий большую наружную поверхность , что необходимо для эффективного протекания фотосинтеза, поглощения СО 2 и света, газообмена и транспирации.

Большая наружная поверхность листа достигается двумя способами: 1) у одних растений - большой величиной листьев (банан, пальмы, виктория-регия), 2) у других - увеличением числа листьев (чем мельче листья, тем их больше). Большое количество листьев – приспособительное свойство, помогающее растениям нормально функционировать при повреждении их насекомыми или другими животными.

2. Лист, как правило, тонкий орган , т.к. через него должен свободно проходить солнечный свет для нормального протекания фотосинтеза.

Поэтому толщина листьев зависит от условий освещения: в затенении формируются тонкие листья, на свету – толстые и более плотные, в воде – очень тонкие листья (так как свет рассеивается).

3. В отличие от стебля и корня, лист обладает ограниченным ростом . Для листа характерно только первичное строение, чтобы через лист хорошо проходил свет (а при вторичном строении образуются непрозрачные и плотные проводящие и механические ткани ).

Обычно лист растёт недолго (в умеренных широтах – 1-2 недели). Исключение – вельвитчия удивительная (голосеменные). Её два листа за счёт вставочного роста нарастают всю жизнь (от нескольких сотен до 3 тыс. лет).

Продолжительность жизни одного листа невелика. У листопадных - максимум один сезон. Есть и вечнозелёные растения, листья которых живут 3-5 лет (у ели – 20 лет).

Внешнее строение листа .

Несмотря на громадное разнообразие листьев, у них, как правило, можно выделить 3 (иногда 2) части:

1. листовая пластинка

Черешок

3. основание листа .

Листовая пластинка – уплощённая (чаще всего) часть листа.

Черешок листа – осевая, стеблевидная, узкая часть листа. От него зависит ориентация листа по отношению к свету. Он может менять положение листа в пространстве, что связано с осмотическими свойствами. Листья с черешками называются черешковыми , если черешок отсутствует, то лист называется сидячим .

Основание листа – часть листа, которой он прикрепляется к стеблю в районе узла. Через основание листовые следы входят в стебель.

Основание листа может разрастаться:

а) по бокам листа образуются парные выросты – прилистники. Они развиваются раньше листовой пластинки и защищают её первое время при формировании. Часто они зелёные и фотосинтезируют. (Иногда прилистники очень крупные и выполняют функции листовых пластинок, которые редуцируются или превращены, например, в усики у некоторых бобовых). У некоторых растений прилистники быстро опадают, у других – сохраняются, пока живёт лист.

б) основание листа разрастаясь, охватывает стебель, образуя влагалище . Оно служит для защиты пазушных почек и интеркалярных меристем, также выполняет механическую функцию, поддерживая нежные участки стебля. Влагалище может быть в виде широкого чехла, открытого с одной стороны (например, у зонтичных), или в виде трубки, часто замкнутой (у злаков и осок). У некоторых растений во влагалище скапливается вода, которая потом впитывается растением (например, в тропиках – дерево путешественников, бромелиевые).

Листья отличаются очень большим разнообразием формы, рассечённости листовой пластинки, края листа. (самостоятельно по учебнику)

По жилкованию листья бывают перистые (дуб) (имеется одна главная жилка, а от неё отходят второстепенные жилки 2-го порядка), пальчатые (клён) (несколько крупных жилок отходят от черешка веером, а от них более мелкие жилки), с дуговым жилкованием (подорожник) и с линейным (или параллельным ) (злаки, осоки). У древнего голосеменного растения гинкго и современых папоротников сохранился самый примитивный тип жилкования – дихотомическое , при котором каждая жилка раздваивается, затем опять раздваивается и т.д.. Такой тип жилкования у всех вымерших и современных споровых растений, а также в типичном виде или видоизменённом – у голосеменных.

По числу листовых пластинок различают листья простые (с одной листовой пластинкой) и сложные (с несколькими листовыми пластинками). У сложных листьев листовые пластинки крепятся к общему черешку – рахису по-разному. Различают перисто-сложные (листочки сидят друг напротив друга на рахисе) (бывают парно- и непарно-перисто-сложные листья) и пальчато-сложные листья (листочки прикрепляются к рахису на верхушке, веером).

Форма листа – характерный признак вида, однако, в пределах одной особи, или даже одного побега, листья могут различаться по форме и образовывать три формации : низовую , срединную и верховую . Листья низовой формации обычно в виде чешуй, бурые или красноватые с неразвитой листовой пластинкой. Например, у ландыша они появляются самыми первыми весной и выполняют защитную функцию. Позже на побеге развиваются листья срединной формации, имеющие нормальное строение и выполняющие основные функции: фотосинтез, транспирацию и газообмен. На цветоносах образуются листья верховой формации – прицветники, защищающие бутоны.

В пределах срединной формации листья на побеге тоже могут различаться по форме. Это явление называется гетерофиллия (разнолистность) . Она обычно проявляется в связи с возрастными изменениями или при жизни растения в разных средах и экологических условиях (например, надводные, подводные и плавающие листья стрелолиста различаются не только по форме, но и по внутреннему строению; то же у рдеста плавающего, горца земноводного и др.; у луговых растений верхние листья более узкие, толстые и рассечённые, получают больше света, нижние более тонкие и широкие, менее рассечены, например, короставник полевой).

Ещё более яркий пример различий листьев – анизофиллия – листья различаются по форме, размерам и структуре в пределах одного узла побега (при супротивном или мутовчатом листорасположении). Встречается у растений с ползучими или лежачими побегами, листья, обращённые к почве обычно чешуевидные. У водного папоротника сальвинии плавающей в узле 3 листа, два надводных обычные, фотосинтезирующие, третий – подводный, рассечён и выполняет всасывающую функцию.

Анатомия листа.

Анатомическое строение листа – наследственно закреплённый признак.

Онтогенез листа.

Лист закладывается в апексе побега. Ниже конуса нарастания появляются бугорки зачаточных листьев – листовые примордии . Каждый примордий появляется через определённый строго постоянный промежуток времени – пластохрон («пластос» - оформленный, «хронос» - время).

Например, у дуба пластохрон 2,8 дня, у липы – 5 дней, у ели – 4,3 часа. Как правило, чем мельче листья, тем короче пластохрон. Благодаря пластохрону листья на растении располагаются в строго определённом порядке.

Рост листа отличается от роста стебля и корня.

1) Новый листовой зачаток закладывается внутри почки в виде меристематического бугорка, который первоначально и очень недолго нарастает верхушкой (верхушечный рост). Затем листовой зачаток дифференцируется на верхнюю и нижнюю части, которые нарастают неодинаково.

2) Лист активно нарастает основанием (происходит заложение прокамбия). Формируется основание листа.

3) Область центральной жилки растёт вставочно в длину, утолщается и приобретает цилиндрическую форму (закладывается ось листа).

4) По бокам оси листа начинает формироваться листовая пластинка за счёт краевого (маргинального лат. Margo – край ) диффузного роста. Краевые меристемы закладываются в виде валиков по бокам центральной жилки и и формируют плоскость листа. Неравномерность краевого роста приводит к формированию пластинок с неровным краем, лопастями, рассечённых и т.д.. Прилистники, как правило, формируются раньше листовой пластинки (как выросты основания листа) и защищают её от повреждений.

5) На последнем этапе происходит рост черешка. Он появляется после того, как листовая пластинка заканчивает свой рост. Черешок растёт в длину за счёт интеркалярно (вставочный рост) и определённым образом ориентирует лист по отношению к свету.

Анатомия типичного листа.

В анатомии листа чётко прослеживается связь анатомического строения с выполняемыми функциями: фотосинтезом, транспирацией и газообменом.

Анатомические отличия листа от стебля и корня.

1) В листе преобладают паренхимные ткани, но не запасающая паренхима, а высокоспециализированная ассимиляционная паренхима, в клетках которой находятся хлоропласты.

2) Проводящих и механических тканей мало, они образуют жилки листа.

3) Много межклетников (связано с функцией газообмена) .

4) Могут быть развиты различные выделительные ткани.

У листа только первичное строение!

1. Снаружи лист покрыт первичной покровной тканью - эпидермой . На листе эпидерма имеет своё наиболее типичное строение. От излишнего испарения воды предохраняет мощный слой кутикулы (у растений влажных мест обитания кутикула тонкая или отсутствует), а также трихомы различного строения. Устьиц очень много. Больше всего устьиц на нижней стороне листа. Это объясняется тем, что 1) при открытых устьицах на верхней стороне листа терялось бы много воды; 2) основным источником СО 2 является почва, где идёт разложение органики и углекислый газ поступает в атмосферу. Он тяжелее воздуха и скапливается обычно в его нижних слоях. Так как углекислый газ поднимается снизу вверх, то расположение устьиц на нижней стороне способствует его скорейшему попаданию в лист по наиболее короткому пути.

Иногда устьица могу быть равномерно распределены по обеим сторонам листа если листья расположены ребром к солнцу (у ряда растений саванн, пустынь, у эвкалипта – дерево не дающее тени ).

Только на верхней стороне листа располагаются устьица у водных растений с плавающими на поверхности воды листьями. У листьев полностью погружённых в воду устьица отсутствуют.

Количество устьиц – в среднем на 1 мм 2 - 250 устьиц.

У некоторых растений (обычно растущих в засушливом климате) под эпидермой может находиться гиподерма (бесцветная), клетки которой выполняют водозапасающую, реже – механическую функцию (напр., у хвойных).

2. Мезофилл листа – высоко специализированная ассимиляционная ткань листа.

У большинства цветковых растений клетки мезофилла неодинаковые по форме. У них различают 2 типа мезофилла: 1) столбчатый (палисадный), примыкает к верхней стороне листа; 2) губчатый (рыхлый), примыкает к нижней стороне листа.

Столбчатый мезофилл состоит из сомкнутых клеток, вытянутых в длину перпендикулярно поверхности листа. Эта ткань получает больше света и в ней сосредоточено mах количество хлоропластов. 80% фотосинтеза идёт именно здесь.

Форма клеток не случайна:

1) Благодаря такой форме хлоропласты защищены от очень ярких солнечных лучей. При резком увеличении интенсивности освещения хлоропласты с коротких стенок уходят на длинные, перпендикулярные поверхности листа.

2) Необходимо, чтобы образовавшиеся в клетках листа органические вещества быстро удалялись. При такой форме клеток отток веществ-ассимилятов идёт достаточно быстро.

Губчатый мезофилл - рыхлая ткань, с большим количеством межклетников. Клетки обычно округлые и хлоропластов в них гораздо меньше. К ним попадает меньше света и только 20% фотосинтеза идёт в клетках губчатой ткани. Тем не менее, значение этой ткани очень велико , именно благодаря развитой системе межклетников, которые способствуют 1) транспирации , т.к. в межклетники выделяются из окружающих клеток пары воды; 2) газообмену (поступающий через устьица СО 2 по межклетникам быстро распространяется по листу, выделяющийся кислород распространяется по межклетникам и выходит через устьица (при дыхании наоборот )) нормальное течение фотосинтеза.

Если лист обращён ребром к свету, то столбчатая ткань развивается с обеих сторон листа.

Распределение губчатой и столбчатой ткани зависит от освещения. Чем больше освещённость, тем сильнее развита столбчатая ткань. При затенении сильнее развивается губчатая ткань и сильнее будет идти транспирация.

Поэтому верхние (наружные) листья (световые ) и нижние (расположенные в глубине кроны дерева) (теневые) имеют разное соотношение столбчатой и губчатой ткани.

Световые листья мелкие и более толстые, с мощной кутикулой, хорошо развита столбчатая ткань.

Теневые листья более тонкие и крупные, столбчатая ткань развита плохо, часто 1 слой, клетки имеют форму воронок, направленных широкой стороной к поверхности листа, преобладает губчатая ткань.

У большинства однодольных растений, некоторых двудольных и хвойных мезофилл однородный, не дифференцирован на столбчатый и губчатый. Такой мезофилл называется изопалисадным.

3. Проводящие и механические ткани – образуют жилки листа.

Жилки – это коллатеральные, закрытые сосудисто-волокнистые пучки. Флоэма в пучке обращена к нижней стороне листа, а ксилема – к верхней . Снизу и сверху они армированы волокнами склеренхимы. Жилки литьев ветвятся, и более мелкие жилки имеют более простое строение. У них отсутствуют механические ткани (есть только ситовидные трубки и сосуды). У некоторых растений тонкие жилки состоят только из трахеид, которые непосредственно соприкасаются с тканями листа. Кроме транспорта воды по этим трахеидам передвигаются вещества – ассимиляты. У других растений тонкие жилки могут состоять только из ситовидных элементов, у трубок неясно выражены «ситечки» или их нет совсем, клетки – спутницы могут исчезать, а иногда становятся крупнее. На концевых участках такие жилки представлены только материнскими клетками флоэмы, не дифференцированными на ситовидные трубки и клетки-спутницы. Современные исследования выявили несколько типов строения мелких жилок (см учебник.)

У многих растений вокруг жилок имеется обкладка из паренхимных клеток. Эти клетки вытянуты вдоль жилок, не содержат хлоропластов. Через них в жилки поступают продукты фотосинтеза.

Иногда механических тканей жилок оказывается недостаточно, и тогда образуются дополнительные механические ткани . В крупных жилках сверху и снизу добавляется колленхима (она часто присутствует и в черешках листа), иногда развивается и добавочная склеренхима. Мезофилл может укрепляться склереидами – идиобластами, рассеянными между ассимиляционными тканями. У некоторых растений в листовой пластинке развивается много лубяных волокон (агавы, пальмы, банан, дерево путешественников).

4. Выделительные ткани - желёзки с эфирными маслами, вместилища смол, млечники, гидатоды и т.д..

Анатомическое строение листа хвойных.

Хвойные возникли в позднем карбоне (около 290 млн. лет назад), когда климат на планете стал иссушаться. Листья современных хвойных имеют много черт, свидетельствующих об их засухоустойчивости, т.е. обладают ксероморфными признаками . Это может быть связано с тем, что большинство представителей этого класса окончательно сформировались на протяжении сухого и относительно прохладного пермского периода (286 – 248 млн. лет назад). В то время постепенное возрастание аридности, вероятно, благоприятствовало такого рода структурным адаптациям.

Листья хвойных игольчатые (сосна, ель, пихта, лиственница) или чешуевидные (туя, кипарис), как правило, вечнозелёные (искл. Лиственница – вторичное приспособление к очень холодному климату ), приспособлены к экономной транспирации воды и к перенесению засухи, в том числе и зимней, когда при низких температурах корни не могут поглощать воду.

1) Наружная поверхность хвоинок очень мала (мала площадь испарения).

2) Эпидерма состоит из толстостенных клеток к мощной кутикулой (защита от испарения).

3) Погружённые устьица. Замыкающие клетки частично одревесневают, а канал заполняется смолами или воском (резкое снижение транспирации).

4) Под эпидермой кольцом расположена особая ткань гиподерма, состоящая из одревесневших волокон, что снижает испарение и повышает механическую прочность.

5) Главное отличие от покрытосеменных: нет дифференциации на столбчатый и губчатый мезофилл, все клетки однородные, образуют складчатый мезофилл. Это адаптивная компенсация малой наружной поверхности. У клеток мезофилла оболочка образует внутренние складки, что обеспечивает резкое возрастание постенного слоя цитоплазмы и внутренней поверхности.

В клетках за счёт увеличения их внутренней поверхности возрастает число хлоропластов, и при малой внешней поверхности хвоинки процессы фотосинтеза идут также интенсивно, как и в обычных листьях цветковых растений.

6) Двойной сосудисто-волокнистый пучок окружён эндодермой, регулирующей транспорт веществ. При вхождении в стебель двойной пучок сливается в один, образуя один листовой след.

7) Проводящие пучки окружены трансфуззионной тканью, которая состоит: а) из лучевых трахеид (транспорт воды), б) клеток живой паренхимы (транспорт органических веществ-ассимилятов).

8) Имеются смоляные ходы, расположенные между клетками мезофилла.

Метаморфозы листа.

Лист может выполнять функции, ему не свойственные:

1) Роль корня (сальвиния – в виде тонких нитей в воде – аналогичные органы)

2) Листья часто превращаются в колючки (у растений пустынь, степей, саванн). Мезофилл листа редуцируется, а остаётся обычно только центральная жилка, которая дополнительно армируется склереидами (кактусы, барбарис и др.).

Приспособлением к чему являются колючки: а) уменьшение испаряющей поверхности в условиях водного дефицита; б) защита от поедания животными.

С помощью электронного микроскопа удалось выяснить роль колючек кактуса. Это микроскопические насосы, которые втягивают воздух и конденсируют воду.

3) Превращение листьев в усики (бобовые, тыквенные) – служат для опоры стебля и его прикрепления.

4) Иногда может видоизменяться черешок. Он уплощается, становится зелёным и выполняет функцию фотосинтеза. Листовая пластинка при этом часто редуцируется. Характерно для растений засушливых областей (например, австралийские филлодийные акации)

5) Запасающие листья – чаще всего воду (алоэ, агавы и т.д.).

6) У насекомоядных растений листья превращаются в ловчие аппараты. Обычно у них имеются пищеварительные желёзки, выделяющие пищеварительный сок.

Впервые эти растения были изучены Ч.Дарвином. Он объяснил появление этих растений. Они живут там, где в почве мало азота, фосфора и других минеральных веществ (например, на торфяных болотах, во влажных тропических лесах, стоячих водоёмах). Необходимые им вещества они получают, переваривая насекомых, иногда других мелких животных.

Известно около 500 видов насекомоядных растений (растений-хищников). Они встречаются от Арктики до тропиков. Существует 3 группы насекомоядных растений, различающихся типами ловушек. Это: 1) западни (саррацения, непентес); 2) липучки (росянка, росолист и др.); 3) капканы (венерина мухоловка, пузырчатка).

1. западни . У саррацении (Сев. Америка)ловчие листья напоминают цветки-кувшины. Они ярко окрашены и снаружи имеют посадочную площадку для насекомых., а у входа в кувшин – нектарники. Здесь же располагаются направленные вниз острые волоски, которые позволяют жертве легко соскальзывать вниз, но не дают подняться вверх. Кувшин на 2/3 заполнен жидкостью. Стенки кувшина имеют пищеварительные желёзки, выделяющие пищеварительный сок. Более примитивные довушки заполнены дождевой волой, попавшие туда насекомые сначала разлагаются, а затем всасываются растением.

Непентес (троп. Азия) - очень узко специализированная лиана. Черешок листа состоит из 3 частей: филлодия, собственно черешка и ярко окрашенного кувшинчика, прикрывает кувшинчик окрашенная листовая пластинка. Кувшинчик может вмещать до 1 л жидкости, содержащей пищеварительный сок. Имеются нектарники для привлечения насекомых, стенки кувшинчика покрыты воском и направленными вниз волосками. Попав в западню, насекомое переваривается за 5-8 часов.

2. липучки. У росянки листья покрыты железистыми волосками, выделяющими липкий секрет. Имеются также пищеварительные желёзки. Капельки жидкости блестят на солнце как капли росы, привлекая добычу. Ни нектара, ни запаха нет. Насекомые садятся на лист и приклеиваются к нему, лист сворачивается и выделяет пищеварительный сок. Переваренная пища всасывается. Через несколько дней лист разворачивается.

3. капканы . Наиболее сложные у венериной мухоловки (Сев.Америка). Лист разделён на две части, верхняя является капканом, на ней расположены чувствительные и железистые волоски.Стоит насекомым дотронуться до волосков, как лист мгновенно схлопывается (тургор!).

Сложная ловушка у пузырчатки. (Кр. Книга Ул. обл. – 3 вида). На плавающих у поверхности воды тонких, рассечённых листьях имеются многочисленные ловчие пузырьки (до 2мм в диаметре). Ловчий пузырёк имеет круглое отверстие с клапаном и чувствительные волоски. В полости пузырька отрицательное давление, так как из него откачивается вся жидкость. Мелкие ракообразные (дафнии, циклопы), инфузории, проплывая мимо, задевают чувствительные волоски, клапан мгновенно открывается и добыча засасывается внутрь пузырька вместе с водой. Клапан закрывается.

  • Анатомическое строение периферического отдела артикуляционного аппарата.
  • В мозаике чувств конкретного индивида отражается структура его потребностей, строение его личности, система его ценностей.
  • ВВОД ИЗМЕНЕНИЯ ОДНОГО И ТОГО ЖЕ ЗНАЧЕНИЯ НА НЕСКОЛЬКИХ ЛИСТАХ.
  • Виды государственного устройства. Форма государственного устройства - это национальное и административно-территориальное строение государства

  • Сердцевина хвойных пород (сосны) имеет округлую форму с неправильными лучевыми выростами. Она состоит из довольно крупных паренхимных клеток, имеющих форму многогранников с тонкими одревесневшими стенками; у старых деревьев клетки эти мертвы, полости их заполнены воздухом. Сердцевину окружают образовавшиеся в первый год роста элементы, составляющие первичную древесину. Сердцевина вместе с прилегающей к ней первичной древесиной называется сердцевинной трубкой. Древесина хвойных пород отличается сравнительной простотой и правильностью строения. В состав ее входят всего два основных элемента: проводящие и механические функции здесь выполняют трахеиды, а запасающие - паренхимные клетки. На рис. 16 показана объемная схема микроскопического строения древесины типичной хвойной породы - сосны.

    Трахеиды - основной элемент древесины хвойных пород. Они занимают свыше 90% общего объема древесины. Трахеиды имеют форму сильно вытянутых в длину веретенообразных клеток (волокон) с утолщенными одревесневшими стенками и кососрезанными концами. На поперечном разрезе трахеиды расположены правильными радиальными рядами. Форма трахеид на поперечном разрезе близка к прямоугольной. Трахеиды - мертвые элементы; в стволе растущего дерева только вновь образующийся (последний) годичный слой содержит живые трахеиды, отмирание которых начинается еще весной, постепенно увеличивается к осени, а к концу зимы все трахеиды последнего годичного слоя отмирают.

    Рис. 16. Схема микроскопического строения древесины сосны: 1 - годичный слой; 2 - сердцевинный луч; 3 - вертикальный смоляной ход; 4 - ранние трахеиды; 5 - поздние трахеиды; 6 - окаймленная пора; 7 - лучевые трахеиды; 8 - многорядный луч с горизонтальным смоляным ходом.

    В пределах одного годичного слоя трахеиды ранней и поздней зоны сильно отличаются друг от друга. Ранние трахеиды. образующиеся в начале вегетационного периода, выполняют проводящие функции (проводят воду), поэтому имеют широкую внутреннюю полость и тонкие стенки с многочисленными порами. Размер ранних трахеид по радиальному направлению больше, чем по тангенциальному; концы трахеид слегка закруглены. Поздние трахеиды, отложенные камбием во второй половине вегетационного периода,- механические элементы, поэтому стенки их сильно утолщены из-за резкого уменьшения внутренней полости; концы поздних трахеид сильно заострены (рис. 17).
    Рис. 17. Трахеиды и сердцевинные лучи: а-ранняя древесина; б - поздняя; трахеиды сосны сверху; сердцевинные лучи на радиальном разрезе под микроскопом (снизу); слева - сосны; справа - пихты; 1 - лучевые трахеиды с мелкими окаймленными порами; 2 - паренхимные клетки с простыми порами (крупными в сосне и мелкими в пихте).Между типично ранними трахеидами в начале годичного слоя и типично поздними трахеидами в конце слоя находится несколько рядов трахеид, которые по толщине оболочек и размерам полости занимают промежуточное положение между ранними и поздними трахеидами. Такой слой промежуточных трахеид наблюдали в древесине сосны и лиственницы. Ширина ранних трахеид сосны по радиальному направлению составляет в среднем 40 μ, поздних - 20 μ; толщина стенок ранних трахеид 2 μ, поздних - от 3,5 до 7,5 μ. Ширина ранних трахеид ели из Архангельской области в среднем 45 μ, поздних - 22 μ; толщина стенок ранних трахеид около 3 μ, поздних - около 5 μ. Длина трахеид сосны колеблется от 2,1 до 3,7 мм, трахеид ели - от 2,6 до 5 мм; при этом длина поздних трахеид примерно на 10% больше ранних. У большинства наших хвойных пород стенки трахеид гладкие и лишь у тисса они имеют хорошо заметные спиральные утолщения.Толщина оболочек трахеид сосны при переходе в позднюю зону сначала увеличивается, достигая максимума, а затем около границы годичного слоя уменьшается. Таким образом, самые толстостенные трахеиды находятся не у границы годичных слоев, а в его третьей четверти. Характерная особенность трахеид - окаймленные поры, расположенные преимущественно на радиальных стенках у концов трахеид, которыми каждая трахеида вклинивается между соседними, образуя плотное соединение. Типичные окаймленные поры присутствуют на стенках ранних трахеид; поздние трахеиды имеют поры меньших размеров и в значительно меньшем количестве. На одной ранней трахеиде сосны находится в среднем 70 пор, на одной поздней - всего 17 пор; на трахеидах ели соответственно 90 и 25, на трахепдах лиственницы европейской - 90 и 8 пор. Диаметр окаймленных пор у разных пород колеблется от 8 до 31 μ, диаметр отверстия - от 4 до 8 μ. Мембрана окаймленных пор в трахеидах хвойных пород имеет в периферической неутолщенной части мелкие сквозные перфорации овальной или круглой формы, облегчающие сообщение между трахеидами.При отклонении мембраны в ту или иную сторону торус закрывает отверстие поры, вследствие чего проход воды через нее сильно затрудняется. В ядровой и спелой древесине хвойных пород окаймленные поры по существу выключены из действия и поэтому такая древесина становится труднопроницаемой для воды.

    Общее количество окаймленных пор в ранней древесине ели имеет тенденцию к увеличению в направлении от коры к сердцевине, а у пихты - наоборот. Однако количество закрытых пор в древесине обеих пород возрастает в направлении от коры к сердцевине, причем наиболее резкое, скачкообразное увеличение количества их наблюдается при переходе заболони в спелую древесину. Вместе с тем замечено, что в поздних трахеидах ядра сосны закрытых пор значительно меньше, чем в ранних (по некоторым данным, в 8 раз), благодаря чему поздняя зона годичных слоев пропитывается антисептиками лучше, чем ранняя. Размеры трахеид и толщина их стенок в одном и том же стволе увеличивается в направлении от сердцевины к коре до определенного возраста (разного у различных пород), после чего остаются неизменными или несколько убывают. Диаметр ранних трахеид сосны достигает максимума в 40 лет и в дальнейшем уже почти не изменяется.

    По высоте ствола у спелых деревьев длина и ширина трахеид в одном и том же годичном слое постепенно увеличивается от основания ствола до кроны, а в пределах кроны быстро уменьшаются по мере приближения к вершине; толщина стенок трахеид, наоборот, сперва уменьшается, а в области кроны снова несколько увеличивается. В ветвях трахеиды имеют меньшие размеры, чем в стволе; ветви, которые отходят от ствола в том месте, где трахеиды длиннее, имеют также более длинные трахеиды. Условия произрастания оказывают влияние на размеры трахеид сосны Брянской области, оказалось, что наиболее крупные ранние трахеиды и наиболее толстостенные поздние трахеиды наблюдаются при средних, оптимальных для сосны, условиях произрастания (I-II бонитет); улучшение (бонитет I а) и ухудшение (бонитет IV) условий произрастания сопровождаются уменьшением размеров ранних трахеид и толщины стенок поздних трахеид. Условия произрастания оказывают влияние главным образом на толщину стенок поздних трахеид. а толщина стенок ранних трахеид почти не изменяется.

    Паренхимные клетки в древесине всех хвойных пород составляют сердцевинные лучи, смоляные ходы (у некоторых хвойных) и у отдельных пород древесную паренхиму. Сердцевинные лучи хвойных пород очень узкие (однорядные на поперечном разрезе), по высоте состоят из нескольких рядов клеток. У сосны, кедра, лиственницы и ели сердцевинные лучи состоят из двух видов клеток: верхний и нижний ряды по высоте луча представлены горизонтальными (или лучевыми) трахеидами с мелкими окаймленными порами и характерным утолщением стенок у некоторых хвойных; внутренние, т. е. средние по высоте, ряды состоят из паренхимных клеток с простыми порами (см. рис. 17). Сердцевинные лучи пихты, тисса и можжевельника состоят только из паренхимных клеток. Паренхимные клетки лучей сосны и кедра снабжены одной-двумя большими простыми порами, а у остальных наших хвойных пород эти клетки имеют по три-шесть мелких простых пор. У сосны, кедра, лиственницы и ели, кроме однорядных лучей, есть еще многорядные, по которым проходят горизонтальные смоляные ходы. Лучевые трахеиды - мертвые элементы, паренхимные клетки луча остаются живыми на протяжении заболони, а иногда и в ядре, т. е. в течение 20-30 лет.

    В растущем дереве по сердцевинным лучам происходит движение питательных веществ и воды в горизонтальном направлении в период вегетации; в период покоя в них хранятся запасные питательные вещества. По сердцевинным лучам хвойных и лиственных пород проходит вода с растворенным фосфорнокислым натрием, содержащим радиоактивный изотоп фосфора Р 32 .

    Смоляной ход представляет собой заполненный смолой узкий длинный межклеточный канал, образованный паренхимными клетками. Смоляные ходы (вертикальные и горизонтальные) из наших хвойных пород имеют сосна, ель, лиственница и кедр; у ряда других хвойных пород (пихта, тисс, можжевельник) смоляных ходов в древесине нет.


    Рис. 18. Вертикальные смоляные ходы на поперечном разрезе древесины сосны и лиственницы: а-в древесине сосны освобожденный от смолы: б - в древесине сосны заполненный смолой; в - в лиственнице: 1 - выстилающие клетки; 2 - мертвые клетки; 3 - клетки сопровождающей перенхимы; 4-канал хода; 5 - трахеиды; 6 - сердцевинный луч.

    Вертикальные смоляные ходы у сосны образованы тремя слоями клеток древесной паренхимы: внутренний слой; кольцо мертвых клеток и наружный слой. Внутренний слой, или эпителий, смоляного хода сосны состоит из выстилающих клеток, имеющих вид тонкостенных пузырей, которые вдаются в канал смоляного хода на различную глубину. При заполнении хода смолой под большим давлением они становятся плоскими, а при опоражнивании хода вдаются в канал до соприкосновения друг с другом (рис. 18). Выстилающие клетки сосны имеют тонкие целлюлозные стенки и наполнены густой зернистой протоплазмой с большим ядром; именно эти клетки выделяют смолу. У ели и лиственницы оболочка выстилающих клеток утолщается и древеснеет, вследствие чего они, вероятно, теряют способность выдавливать смолу из хода. Кольцо мертвых клеток, лишенных протоплазмы и заполненных воздухом, окружает эпителий смоляного хода.

    Наружный слой представлен живыми клетками сопровождающей паренхимы с ядром, густой протоплазмой и запасными питательными веществами (крахмалом, маслом). Длина выстилающих клеток на продольных разрезах древесины немногим превышает поперечные размеры, мертвые клетки узки и длинны, а сопровождающие клетки в несколько раз длиннее мертвых и значительно шире их. Просвет (канал) вертикального смоляного хода по тангенциальному направлению обычно соответствует четырем рядам трахеид. С возрастом диаметр вертикальных смоляных ходов увеличивается по направлению от сердцевины к коре. В древесине сибирской лиственницы вертикальные смоляные ходы, образованы только одним рядом выстилающих клеток; слоя мертвых клеток нет, а сопровождающие клетки единичны или же их нет. В случае повреждения растущего дерева количество смоляных ходов может увеличиваться. Горизонтальные смоляные ходы проходят по сердцевинным лучам (рис. 19) и обычно образованы только двумя слоями клеток: эпителием и слоем мертвых клеток.

    Длина горизонтальных ходов увеличивается с возрастом по мере нарастания древесины и луба; наружный конец их, находящийся в лубе, замыкается разрастанием выстилающих клеток. Диаметр горизонтальных смоляных ходов в среднем в 2,5-3 раза меньше диаметра вертикальных ходов. У сосны диаметр горизонтальных ходов 36-48μ, у кедра сибирского 48-64 μ у ели 20-32 μ, у лиственницы 24-48 μ; на 1 мм 2 поверхности тангенциального разреза у сосны, ели и кедра находится от одного до трех, а у лиственницы от одного до четырех смоляных ходов. Горизонтальные смоляные ходы пересекаются с вертикальными (см. рис. 19), образуя единую смолоносную систему.

    Рис. 19. Смоляные ходы и клетки камбия: а - горизонтальный смоляной ход в сердцевинном луче сосны; б - соединение вертикального и горизонтального смоляных ходов на тангенциальном разрезе древесины; в - форма клеток камбия (схема); 1 - выстилающие клетки; 2 - мертвые клетки; 3 - канал горизонтального хода; 4 - канал вертикального хода; 5 -форма клеток камбия на тангенциальном разрезе (односкатная и двускатная); 6 - на радиальном; 7 - на поперечном разрезах.

    Число соединений вертикальных xодов с горизонтальными достигает нескольких сотен в 1 см 3 . Из этой системы связанных смоляных ходов выключаются ходы ядра, которые перестают функционировать, так как живые клетки отмирают; каналы ходов в сосне заполняются при этом выростами выстилающих клеток. Однако в ядре лиственницы сибирской большое количество смоляных ходов остается открытым (каналы их не заполнены).

    Древесная паренхима в хвойных породах мало распространена. Паренхимные клетки, несколько вытянутые по длине ствола, часто бывают соединены в довольно длинные ряды, проходящие в древесине параллельно оси ствола. Среди наших хвойных пород древесной паренхимы нет у сосны и тисса. Примерное содержание различных элементов в древесине хвойных пород приведено в табл. 5.

    Таблица 5. Содержание различных элементов в древесине хвойных пород.

    сердцевинных лучей

    смоляных ходов

    древесной паренхимы

    Сосна (разные виды)

    Ель (разные виды)

    Лиственница западная

    Лжетсуга

    Можжевельник виргинский

    Секвойя вечнозеленая

    Камбий состоит из непрерывного ряда узких, сплюснутых в радиальном направлении, сильно вытянутых по длине ствола живых клеток с клиновидно заостренными концами. Клетки камбия наибольшей длины достигают у хвойных пород. У лиственных пород длина клеток камбия колеблется от 0,15 до 0,6 мм и превосходит поперечные размеры в несколько десятков раз, а у хвойных может достигать 5 мм и превышает поперечные размеры в несколько сот раз. Клетки содержат густозернистую протоплазму с ядром веретенообразной формы. Форма клеток камбия на трех разрезах схематически показана на рис. 19.

    Кроме сильно вытянутых по длине клеток, образующих волокнистые элементы древесины и коры, наблюдаются разбросанные скопления мелких клеток типа паренхимных, которые образуют сердцевинные и лубяные лучи. Расположенный на границе между древесиной и корой камбий сплошной мантией одевает всю древесину дерева. Деятельность камбия обусловливает рост дерева в толщину. При росте камбиальные клетки слегка вытягиваются по радиусу ствола и делятся тангенциальными перегородками. Одна из образовавшихся клеток остается камбиальной, а другая идет на формирование элементов древесины или коры. Деление клеток в сторону древесины происходит в 10 раз чаще, чем в сторону коры, вследствие чего древесина нарастает значительно быстрее коры.

    Камбий работает в течение всей жизни дерева, т. е. иногда сотни и даже тысячи лет (секвойя); при этом деятельность его в условиях умеренного климата проявляется периодически: замирает на зиму и возобновляется весной, следствием чего является слоистость древесины (образование годичных слоев). Деятельность камбия весной раньше всего начинается в тонких частях ствола и ветвей, распространяясь вниз по стволу, переходит затем в корни, сначала толстые, а затем тонкие; окончание деятельности камбия осенью происходит в том же порядке.

    Хорошим мотивом к эффективной учебной деятельности при занятиях ботаникой является регулярная практика, при которой дети увидят в реальности то, что есть на картинках учебников. Одним из несложных первых опытов может стать изучение пластинчатого листа любого лиственного дерева или иголочек хвои сосны под микроскопом . Ввиду простоты этой работы, она не просто разовьет любознательность и подвигнет к новым исследованиям, но и научит действовать самостоятельно.

    Хвоя сосны - это игловидный наружный орган сосудистого хвойного растения семейства «сосновые», которое насчитывает более ста тридцати известных видов. В простонародье она называется «иголка», но с точки зрения ботаники — это заострённый и слегка изогнутый лист с твердой стволообразной структурой.

    По форме бывают плоские или четырехгранники. Если микротомом сделать поперечный срез и рассмотреть хвою сосны под микроскопом, можно визуально определить следующие элементы строения:

    1) От четырех до пяти рядов неспециализированных пузыревидных клеток эпидермы. Это кожица, верхний покровный слой. Он несет в себе три функции: защитная от внешней среды, обмен газами, участие в процессе движения воды;

    2) Участок гиподермы. Располагается непосредственно под эпидермисом, в несколько раз тоньше его. Это результат митоза соседних клеточных слоев;

    3) Опорная и запасающая паренхима. По сути, эта ткань - сердцевина, являющаяся хранилищем питательных веществ. Содержит витамины, жиры, белки, также насыщенные воздухом межклетники и водоносные клетки. Благодаря ее складчатому строению и большому количеству хлоропластов, значительно повышается площадь фотосинтеза, при котором собранная энергия светового излучения трансформируется в органические соединения;

    4) Эндодерма - внутренний защищающий покров, располагающийся ближе к оси сосновой иглы;

    5) Флоэма и ксилема (проводящие ткани). Так называемый «флоэмный сок», представляющий раствор сахарозы и незначительного кол-ва других углеводов, транспортируется к определенным областям, потребляющим продукты фотосинтеза;

    6) Волокнистые клетки склеренхимы. Обеспечивают упругость, защищают от деформаций, выдерживая силовые воздействия (например, при сдавливании или сгибе);

    7) Широкие вертикальные и горизонтальные каналы, заполненные смолой - крупные «смоляные ходы». Масса смолистой живицы предохраняет от проникновения вредоносных насекомых (таких, как короеды, долгоносики).

    Микроскопировать хвою можно в проходящем или отраженном свете. Микропрепарат готовится стандартно: взятый материал укладывается на предметное стекло, пипеткой добавляется капелька бесцветной клейкой пихтовой смолы, сверху накрывается тоненьким покровным стёклышком. Включив подсветку и произведя центрирование на столике, надо затем выбрать поисковый объектив наименьшей кратности. Когда исследуемый препарат появился в поле обзора, можно провести смену увеличения на более мощное (с повторной фокусировкой). Для получения микрофотографии надо вывести изображение на экран смартфона (на окулярную трубку устанавливается адаптер) или на монитор компьютера (вместо окуляра в данном случае вставляется видеоокуляр с выходом USB).

    Подходящие модели для описанных выше наблюдений: Микромед С-12, Эврика 40х-400х, Levenhuk Rainbow 2L PLUS.

      Рассмотрите готовый микропрепарат «Хвоя сосны» на поперечном срезе при малом увеличении микроскопа, отметьте расположение тканей; наличие двух проводящих пучков, которые объединены комплексом механических волокон, окружены трансфузионной тканью и эндодермой; однородность мезофилла; гиподерму, находящуюся под эпидермисом; смоляные ходы.

      При большом увеличении микроскопа рассмотрите особенности клеток всех тканей.

      Зарисуйте схему строения листа на поперечном срезе, укажите его строение.

    Описание объекта: Лист сосны (хвоя) м ноголетний, с ксероморфной структурой, строение которого обусловлено резкими колебаниями температуры в течение года и недостаточным водоснабжением в зимнее время. Уменьшение испаряющей поверхности достигается игольчатой формой листьев.

    В поперечном сечении лист сосны полукруглый: морфологически верхняя сторона листа плоская, нижняя – выпуклая. Снаружи располагается толстая кутикула, под которой лежит эпидермис. Его клетки мелкие, квадратной формы, с очень толстыми оболочками. Полости эпидермальных клеток округлые, к углам клеток отходят узкие поровые каналы. Устьица расположены по всей поверхности хвоинки, они заглублены, их замыкающие клетки находятся на уровне однослойной гиподермы из толстостенных клеток с одревесневшими оболочками, под околоустьичными клетками. Утолщенные оболочки замыкающих и околоустьичных клеток одревесневшие.

    Мезофилл складчатый, однородный, с небольшими межклетниками. За счет выростов клеточной оболочки увеличивается поверхность постенного слоя цитоплазмы, содержащего хлоропласты. В мезофилле расположены схизогенные смоляные ходы. Они проходят вдоль листа и слепо заканчиваются вблизи верхушки. Снаружи смоляной канал имеет обкладку из толстостенных волокон. Его полость выстлана тонкостенными живыми клетками эпителиальной ткани, выделяющими смолу.

    Проводящая система представлена двумя коллатеральными закрытыми пучками, расположенными в центре под углом друг к другу. Ксилема обращена к плоской стороне листа, флоэма – к выпуклой. Между пучками в нижней части расположены волокна с одревесневшими оболочками. Проводящие пучки окружены трансфузионной тканью, которая состоит из клеток двух типов. Одни клетки удлиненные, с одревесневшими оболочками и окаймленными порами (трансфузионные трахеиды), другие – живые, тонкостенные, паренхимные, нередко содержащие смолистые вещества и крахмальные зерна. Трансфузионная ткань участвует в передвижении веществ между проводящими пучками и мезофиллом. Проводящие пучки с трансфузионной тканью отделены от мезофилла эндодермой – однорядным слоем паренхимных клеток с пятнами Каспари на радиальных стенках.

    Рис. 27. Схема поперечного среза хвои сосны обыкновенной (Pinus sylvestris L .):

    1 – эпидермис с устьицами, 2 – гиподерма, 3 – схизогенный смоляной канал, 4 – складчатый мезофилл, 5 – эндодерма, 6 – коллатеральный проводящий пучок, 7 – флоэма, 8 – ксилема, 9 – склеренхима, 10 – трансфузионная ткань, 11 – кутикула.

    Выводы: _____________________________________________________________________________

    ______________________________________________________________________________________