Самые эффективные солнечные батареи для дома сегодня — это не что-то сверхнеобычное и новое, а просто отличный альтернативный источник энергии. Но чем больше устройств такого типа появляется на рынке, тем чаще люди задаются вопросом: а какое из них стоит выбрать? Эффективность какой солнечной панели максимально высокая? Но для каждого это понятие звучит словно по-разному, так как характеризуется оно целым рядом отдельных потребностей, об этом и будем говорить дальше.

Начнем с того, что главным вопросом должен быть не «Какие естьсамые эффективные солнечные панели?», а «Где оптимальное сочетание цены и качества? » Скажем, на крыше вашего дома или предприятия имеется свободное пространство, на котором можно поместить около десятка солнечных панелей, а сами вы предстали перед выбором: покупать устройства с первым классом энергоэффективности, то есть «А», или отдать предпочтение более дешевым, но менее эффективным панелям класса «В»? Возможно, ответ вас удивит, но более целесообразным в большинстве случаев будет как раз второй вариант. Если говорить проще, то основная наша задача заключается сейчас в том, чтобы определить, какой из солнечных источников энергии наиболее выгодно использовать в той или иной ситуации.

Модели самых энергоэффективных солнечных батарей

  • Sharp . Показатель эффективности у моделей данной фирмы составляет 44,4 %. Производитель Sharp считается абсолютным мировым лидером по производству солнечных панелей. Эти устройства довольно сложно устроены, солнечные модули здесь трехслойные, на разработку технологии их создания производители потратили несколько лет, за такой период проведя множество исследований и испытаний собственной продукции. Есть и другие, упрощенные модели. Технология создания некоторых панелей Sharp обеспечивает им КПД величиной 37,9 %, что тоже немало. Цена устройств ниже за счет того, что в них не используются технические приспособления для концентрации солнечного света на модуль.
  • Панели от испанского исследовательского института (IES) . Эффективность их работы составляет 32,6 %. Такие современные солнечные батареи с высоким КПД представляют собой устройства с двухслойными модулями, стоимость такого энергоисточника по сравнению с предыдущим производителем низкая, но для обычных жилых домов все равно это чересчур дорого и в каком-то роде бессмысленно.

На самом деле этот список можно продолжать долго, беря во внимание все более и более дешевые модели с понижающимся показателем КПД. Но все остается стандартно: высокая эффективность — соответствующая цена, низкая эффективность — стоит дешево. Случается, что по бешеной стоимости предлагают довольно простенькие модели, вы заметите это при выборе, но вернемся к нашей теме.

Знаменитые фирмы по выпуску солнечных модулей

Бытует мнение, что сегодня изучению работы солнечных панелей посвящается все меньше времени, а на передний план вышло исследование неких фотоэлементов, которые являются главными составными любой альтернативной батареи. Но в этом и суть, что никого не заинтересуют панели со слабыми солнечными модулями, на это ведь в первую очередь обращают внимание большинство покупателей. На давно устоявшемся рынке этих самых модулей уже определились лидеры, стоит сказать и о них.

  1. Одними из первых вспомним устройства, имеющие КПД 36 %, их выпускает фирма Amonix , продукция которой есть практически в каждом магазине с товарами такого рода. Для бытовых целей подобные модули фирмы Amonix обычно не применяются, так как производят их с использованием специальных концентрирующих устройств.
  2. Нельзя пройти мимо солнечных модулей с показателем энергоэффективности 21,5 %, их производителем является известная американская марка Sun Power , существующая на рынке уже довольно давно. В какой-то степени этому предприятию удалось установить своеобразный рекорд эффективности. Например, модель Sun Power SPR-327NE-WHT-D была признана лучшей после полевых испытаний. Причем следующие две позиции в рейтинге списка лучших тоже заняла продукция этой фирмы.
  3. Вспомним и о тонкопленочных модулях с КПД 17,4 % - продукт от Q-Cells . Устройства этой немецкой компании в какой-то момент перестали быть популярными и востребованными, Q-Cells разорилась, но потом ее выкупило корейское предприятие Hanwha и сегодня модули марки снова набирают обороты в плане продаж.
  4. Движемся дальше, то есть к солнечным модулям с меньшей эффективностью. 16,1 % нам дают устройства от First Solar , их производят на основе особенного кадмий-теллурового преобразования. На жилых домах приспособления такого типа не устанавливают, однако это ни в коей мере не влияет на обороты компании, а они очень широкие. First Solar в большей степени популярна на американском рынке: сама компания родом из США. Модули данного бренда используются во многих отраслях промышленности, так что фирма имеет отличные обороты и получила всеобщее признание, ведь создает реально надежный продукт.
  5. В качестве последнего из примеров здесь станут солнечные модули с КПД 15,5 % от фирмы под названием MiaSole . Устройства этой марки признаны лучшими среди гибких модулей. Да, именного такого типа устройства порой просто необходимы для установки в тех или иных сооружениях.

Когда вы ищете мощные солнечные батареидля дома или большого производственного цеха, ориентируйтесь не только на соотношение цена/качество, но и на марку. Производителям, которые зарекомендовали себя как лучшие, стоит доверять в таких серьезных вопросах. Если вы не специалист в сборке и установке солнечных панелей, то с какой тщательностью к выбору ни подходи, исследовать каждую модель на прочность, долговечность, экономность и прочие параметры невозможно, поэтому лучше доверять имени.

На сегодняшний день также было проведено множество экспериментов, их результаты однозначно смогут вам помочь. При поиске солнечных батарей ориентируйтесь также на собственные потребности и платежеспособность - ни к чему устанавливать на жилой дом устройство, разработка которого была сделана для НАСА.

Кристаллическая решетка перовскита CH3NH3PbI3

Wikimedia Commons

Американские исследователи показали, что в солнечных элементах на основе перовскитов носители заряда, обладающие избыточной энергией, способны преодолевать значительное расстояние, прежде чем рассеют ее в виде тепла. Это означает, что реализовать фотоэлектрические элементы на горячих носителях, для которых теоретический предел КПД вдвое выше, чем у обычных кремниевых, на практике вполне возможно. Исследование опубликовано в журнале Science .

В самых распространенных на сегодняшний день солнечных элементах, использующих в качестве полупроводника кремний, теоретически возможный коэффициент полезного действия едва превышает 30 процентов. Это связано с тем, что кремниевые элементы способны использовать спектр солнечного света только частично. Фотоны, обладающие энергией ниже пороговой, просто не поглощаются, а обладающие слишком высокой приводят к образованию в фотоэлементе так называемых горячих носителей заряда (например, электронов). Время жизни последних составляет около пикосекунды (10 -12 секунды), потом они «остывают», то есть рассеивают избыточную энергию в виде тепла. Если бы горячие носители удавалось собирать, это повысило бы теоретический предел КПД до 66 процентов, то есть вдвое. Несмотря на то что в некоторых экспериментах небольшое сохранение энергии удавалось наблюдать , элементы на горячих носителях пока остаются скорее гипотетическими.

Ученые из Университета Пердью и Национальной лаборатории возобновляемой энергетики (США) внесли вклад в изучение нового перспективного класса фотоэлектрических элементов на основе перовскитов и продемонстрировали, что в таких элементах горячие носители не только обладают повышенным временем жизни (до 100 пикосекунд), но и способны «пробегать» значительные дистанции в несколько сотен нанометров (что сопоставимо с толщиной слоя полупроводника).

Металлорганические перовскиты получили свое название благодаря кристаллической структуре. Она по сути повторяет структуру природного минерала - перовскита, или титаната кальция. Химически они представляют собой смешанные галогениды свинца и органических катионов. Авторы работы использовали распространенный перовскит на основе иодида свинца и метиламмония. Исходя из того, что в перовскитах время жизни горячих носителей существенно увеличено по сравнению с другими полупроводниками, авторы решили выяснить, на какое расстояние могут переноситься горячие носители за время их остывания. С использованием ультраскоростной микроскопии исследователям удалось непосредственно пронаблюдать транспорт горячих носителей в тонких пленках перовскита с высоким пространственным и временным разрешением.


Транспорт горячих носителей в полупроводнике в течение первой пикосекунды после возбуждения

Guo et al / Science 2017

Оказалось, что медленное остывание в перовскитах сопряжено с дальностью пробега, которая составила до 600 нанометров. Это означает, что носители заряда с избыточной энергией теоретически способны преодолевать слой полупроводника и достигать электрода, то есть их возможно собирать (правда, как это реализовать технически, авторы работы не обсуждают). Таким образом, солнечные элементы на горячих носителях, возможно, удастся воплотить в жизнь, взяв за основу перовскиты.

К настоящему времени максимальный КПД, доходящий до 46%, был зарегистрирован для многослойных многокомпонентных фотоэлектрических элементов, в состав которых входит арсенид галлия, индий, германий со включениями фосфора. Такие полупроводники используют свет более эффективно, поглощая различные части спектра. Производство их очень дорого, поэтому такие элементы используются только в космической промышленности. Ранее мы писали также про элементы на основе теллурида кадмия, которые можно производить в виде гибких и тонких пленок. Несмотря на то, что общий вклад в производство электроэнергии солнечной энергетики пока не превышает 1%, темпы роста можно назвать взрывными. Особенно заинтересованы в использовании возобновляемой энергии солнца такие страны как Индия и Китай. Компания Google в конце 2016 года заявила, что в этом году собирается полностью перейти на возобновляемую энергетику.

В настоящее время в быту используются в основном кремниевые фотоэлементы, реальный КПД которых составляет 10–20 процентов. Элементы на основе перовскитов появились менее 10 лет назад и сразу вызвали к себе заслуженный интерес (о них мы уже писали ). КПД таких элементов быстро увеличивается и практически доведен до 25 процентов, что сопоставимо с лучшими образцами кремниевых фотоэлементов. К тому же они очень просты в производстве. Несмотря на технологический успех, физические принципы работы перовскитовых элементов относительно мало изучены, поэтому обсуждаемая работа ученых из США вносит важный вклад в фундаментальные основы фотовольтаики и, конечно, влечет за собой перспективу дальнейшего увеличения КПД солнечных элементов.

Дарья Спасская

Мне интересно встречаться с людьми, которые находятся в постоянном поиске. Среди них, мой коллега Александр, фанат электромобилей. Информацию о его разработках и становлении парка электромобилей в Украине вы найдете здесь. Но, как ни странно, кроме электрокара его еще интересуют солнечные панели с высоким КПД.

После заданного им вопроса, мне пришлось немного попотеть, и вот что из этого вышло.

Кремниевые кристаллические фотомодули

Коэффициент полезного действия ячеек кремниевых модулей на сегодня порядка 15 – 20% (поликристаллы — монокристаллы). Этот показатель скоро может быть увеличен на несколько процентов. Например, компания SunTech Power, один из крупнейших мировых производителей модулей из кристаллического кремния, заявила о своем намерении в течение двух лет выпустить на рынок фотомодули с КПД 22%.

Существующие же лабораторные образцы монокристаллических ячеек показывают производительность 25%, поликристаллических – 20,5%. Теоретический максимальный КПД у кремниевых однопереходных (p-n) элементов – 33,7%. Пока он не достигнут, и основная задача производителей, кроме увеличения эффективности ячеек – усовершенствование технологии производства, удешевление фотомодулей.

Отдельно позиционируются фотомодули компании Sanyo, произведенные по технологии HIT (Heterojunction with Intrinsic Thin layer) с использованием нескольких слоев кремния, аналогично тандемным многослойным ячейкам. КПД таких элементов из монокристаллического C-Si и нескольких слоев нано кристаллического nc-Si — 23%. Это самый высокий на сегодня КПД ячеек серийных кристаллических модулей.

Тонкопленочные солнечные батареи

Под таким названием разработано несколько различных технологий, о производительности которых можно сказать следующее.

Сегодня существует три основных типа неорганических пленочных солнечных элементов – кремниевые пленки на основе аморфного кремния (a-Si), пленки на основе теллурида кадмия (CdTe) и пленки селенида меди-индия-галлия (CuInGaSe2, или CIGS).

КПД современных тонкопленочных солнечных батарей на основе аморфного кремния около 10%, фотомодулей на основе теллурида кадмия — 10-11% (производитель компания First Solar), на основе селенида меди-индия-галлия – 12-13% (японские солнечные модули SOLAR FRONTIER). Показатели эффективности серийных элементов: CdTe имеют КПД 15.7% (модули MiaSole), а CIGS элементов, производимых в Швейцарии — 18,7% (ЕМРА).

КПД отдельных тонкопленочных солнечных батарей значительно выше, например, данные по производительности лабораторных образцов элементов из аморфного кремния – 12,2% (компания United Solar), CdTe элементов – 17,3% (First Solar), CIGS элементов – 20,5% (ZSW). Пока солнечные преобразователи на основе тонких пленок аморфного кремния лидируют по объемам производства среди других тонкопленочных технологий – объем мирового рынка тонкопленочных Si элементов около 80%, солнечных ячеек на основе теллурида кадмия – около 18% рынка, и селенид меди-индия-галлия – 2% рынка.

Это связано, в первую очередь, со стоимостью и доступностью сырья, а так же более высокой стабильностью характеристик, чем в многослойных структурах. Отметим, что кремний – один из самых распространенных элементов в земной коре, индий же (элементы CIGS) и теллур (элементы CdTe) рассеяны и добываются в малом количестве. Кроме того, кадмий (элементы CdTe) токсичен, хотя большинство производителей таких солнечных панелей гарантируют полную утилизацию своей продукции.

Дальнейшее развитие фотоэлектрических преобразователей на основе неорганических тонких пленок связано с усовершенствованием технологии производства и стабилизации их параметров.

И все-таки, исходя из стабильности характеристик и относительно недорогой цены, предпочтение отдается солнечным батареям, изготавливаемые на основе аморфного кремния. Но КПД как мы видим, у них не более 12,2%.

Более высокие результаты достигнуты пока в лабораторных условиях. В качестве примера можно привести разработку инженеров из Швейцарской национальной лаборатории материалов, наук и технологий EMPA, которым удалось достигнуть высокого показателя КПД (20,4%) работая с новым поколением тонкопленочных солнечных панелей. В основе новых панелей лежат гибкие полимеры из комплексного соединения CIGS или copper indium gallium (di)selenid (медь-индий-галлий-(ди) селенид).

Много путаницы сегодня существует вокруг понятия кпд гелиосистемы, что является важным критерием их стоимости. Понятие кпд солнечных батарей означает процент падающего на панель солнечного света, преобразованного в электричество, с дальнейшей возможностью использования. Разные материалы для солнечных панелей создают различный кпд, даже одинаковые компании – производители имеют различный показатель эффективности преобразования. Повышение кпд является лучшим способом снизить затраты на солнечную энергию.

КПД солнечной батареи зависит от чистоты пластин, которые используются в качестве сырья при изготовлении. Кроме того, очень важно, является ли панель монокристаллического или поликристаллического вида. Большинство крупных компаний концентрирует свои усилия именно на повышении эффективности, для сокращения расходов в беспощадном использовании солнечной энергетики.

Рассмотрим общий диапазон кпд солнечных батарей, исходя из разных типов элементов и различных технологий.

Бывают следующих - поликристаллического или монокристаллического кремния. Мульти-солнечные батареи имеют более низкую эффективность, чем батареи из монокристаллических элементов.

Кпд солнечной батареи может варьироваться от 12% до 20% для обычного монокристаллического кремния. В обычно устанавливаемых, расчетный кпд составляет 15% и зависит от вида исполнения самого кремния. Одни из мировых производителей постоянно повышают эффективность для того, чтобы снизить свои издержки и опередить соперников в этой конкурентной индустрии. Другие дают максимальную эффективность кристаллических солнечных элементов, используя крупные масштабы производства.

Поликристаллические фотоэлементы имеют более низкую стоимость, чем монокристаллические и кпд в диапазоне 14-17%.

Тонкопленочная технология, в отличие от углерод – кремниевых материалов, имеет ряд преимуществ.

Аморфные кремниевые технологии С-Si имеют самый низкий средний коэффициент эффективности, но они наиболее дешевые.

Наибольший потенциал в повышении эффективности имеют медь-индий-галлий-сульфидные (CIGS) и кадмий - теллур (Cd-Te). Многие изготовители продвигают вперед разработку этой технологии и представляют один из наиболее высоких показателей эффективности своих моделей, увеличив его на 19%. Они достигли этого значения, используя несколько методов, в том числе – применение отражающих покрытий, которые могут захватить больше света от угла.

Если обосновывать зависимость не от материала, а от габаритных размеров, то, чем выше эффективность, тем меньше необходимая площадь рабочей поверхности батарей.

Хотя средний процент может показаться немного низким, можно легко изменить оснащение, именно при установке, с достаточной мощностью, чтобы покрыть потребности в энергии.

Факторы, влияющие на кпд солнечных массивов, включают в себя:

Ориентация поверхности монтажа
Крыша в идеале должна смотреть на юг, но и качество дизайна зачастую может компенсировать другие направления.

Угол наклона
Высота и наклон поверхности может повлиять на количество часов солнечного света, полученных в среднем за день в течение года. Крупные коммерческие системы имеют системы солнечного слежения, которая автоматически изменяет угол падения луча солнца в течение дня. Обычно не используется для жилых установок.

Температура
Большинство панелей при эксплуатации нагреваются. Таким образом, обычно должны быть установлены несколько выше уровня крыши, для обеспечения достаточного потока охлаждаемого воздуха.

Тень
В принципе, тень - враг солнечной энергии.При выборе неудачного дизайна при монтировании, даже небольшое количество тени на одной панели может закрыть производство энергии на всех других элементах.Перед тем, как разработать систему, проводится детальный анализ затенения поверхности крепления, для выявления возможных форм тени и солнечного света в течение года. Затем проводится другой детальный анализ, проверяющий сделанные выводы.

Обычные солнечные батареи с высоким кпд гелиосистем промышленных масштабов устанавливаются на сваи над поверхностью земли на 80см, расположены по направления с востока на запад, вдоль движения солнца, под углом 25 градусов.

Солнечные батареи - уникальный преобразователь энергии световых лучей в электричество с неограниченным внешним источником. Постоянно растущий спрос на данную продукцию обусловлен доступностью и экологичностью энергоснабжения без расхода теплоносителя, а также экономической окупаемостью за 2 года при минимальном сроке службы панелей в 25 лет.

Основой служат полупроводники или пленочные полимеры, пластина из слоев разной полярности преобразует свет в направленное движение электронов - это физическое явление неизменно для всех солнечных батарей. Вместе с тем такое исполнение ограничивает эффективность фотопреобразователей, часть энергии фотонов неизбежно теряется при прохождении границы p-n перехода. На практике на коэффициент полезного действия батарей влияют многие факторы: материал, площадь, расположение, интенсивность светового потока, что учитывается при покупке и эксплуатации.

Зависимость КПД от вида фотопреобразователей

Данный показатель определяется как процентное отношение вырабатываемой электрической энергии к мощности падающего солнечного света. На величину влияет чистота пластины и ее структура: пленочная, поли- или монокристаллическая. Последние виды относятся к самым дорогим и долго окупаемым, доступные солнечные батареи с высоким КПД для дома пока что производят только из слоев кремния разной полярности. Менее эффективными являются панели из террурида кадмия и CIGS, выпускаемые на основе пленочной технологии. КПД кадмиевых батарей составляет всего 11 %, но они дешевы и достаточно надежны в эксплуатации. Чуть выше показатель у пленки с нанесенными частицами галлия, меди, индия и селена, фотоэлементы CIGS эффективны на 15 %.

Для сравнения: КПД кремниевых преобразователей монокристаллического типа - 25 %, а у тонкопленочных или аморфных субмодулей из того же материала - максимум 10, устройства на основе органических полимеров имеют минимальное значение - 5 %. Многое зависит от площади панели, одиночные фотоэлементы ограничены в генерировании электричества.

Величина КПД маленьких солнечных батарей не позволяет использовать их для полноценного энергоснабжения, но их достаточно для запуска некоторых видов электроники. В любом случае, повышение эффективности устройств и минимизация их себестоимости является приоритетной задачей современной энергетики.

Факторы, влияющие на эффективность солнечных батарей

Коэффициент полезного действия зависит не только от применяемого материала и технологии, но и от целого комплекса внешних условий:

1. Интенсивности светового потока. В свою очередь этот показатель связан с географическими координатами расположенной батареи, в частности - с широтой.

2. Угла наклона конструкции. В идеале следует установить солнечные батареи, меняющие его, исходя из градиента падения лучей. Такая система стоит дороже, но она позволяет аккумулировать внушительное количество электричества (до 40–60 %) и меньше зависеть от сезона и времени суток.

3. Температуры окружающей среды. Нагрев плохо влияет на фотоэффект, вентилируемые батареи имеют очень высокий КПД. Как ни парадоксально, но в морозную ясную погоду они вырабатывают больше энергии, чем в жару (хотя общий кумулятивный эффект снижается из-за короткого светового дня).

4. Времени года. На практике КПД солнечных панелей зимой уменьшается в 2–8 раз, но это не связано с выпадением снега: на темной поверхности он быстро тает, кроме того - фотопреобразователи отлично воспринимают рассеянный свет.

5. Запыленности. Чем чище внешняя часть солнечных батарей, тем большее количество фотонов будет преобразовано, поэтому для повышения КПД рабочие поверхности рекомендуется протирать как минимум раз в два года.

6. Тени. Не секрет, что коэффициент полезного действия для солнечных батарей в пасмурную погоду значительно снижается, в туманных и дождливых районах их нет смысла ставить, то же относится и к затененным участкам. Панели нежелательно монтировать в тени высоких деревьев или соседних домов, при выборе месторасположения приоритет отдается южной стороне.